(1)求恰有二人过关的概率, 查看更多

 

题目列表(包括答案和解析)

某公司有男职员45名,女职员15名,按照分层抽样的方法组建了一个4人的科研攻关小组.

(Ⅰ)求某职员被抽到的概率及科研攻关小组中男、女职员的人数;

(Ⅱ)经过一个月的学习、讨论,这个科研攻关组决定选出两名职员做某项实验,方法是先从小组里选出1名职员做实验,该职员做完后,再从小组内剩下的职员中选一名做实验,求选出的两名职员中恰有一名女职员的概率;

(Ⅲ)试验结束后,第一次做试验的职员得到的试验数据为68,70,71,72,74,第二次做试验的职员得到的试验数据为69,70,70,72,74,请问哪位职员的实验更稳定?并说明理由.

查看答案和解析>>

(本小题满分12分)某公司有男职员45名,女职员15名,按照分层抽样的方法组建了一个4人的科研攻关小组。

(1)求某职员被抽到的概率及科研攻关小组中男、女职员的人数;

(2)经过一个月的学习、讨论,这个科研攻关组决定选出两名职员做某项实验,方法是先从小组里选出1名职员做实验,该职员做完后,再从小组内剩下的职员中选一名做实验,求选出的两名职员中恰有一名女职员的概率;

(3)实验结束后,第一次做实验的职员得到的实验数据为68,70,71,72,74,第二次做实验的职员得到的实验数据为69,70,70,72,74,请问哪位职员的实验更稳定?并说明理由。

 

查看答案和解析>>

某校为了解高三年级不同性别的学生对体育课改上自习课的态度(肯定还是否定),进行了如下的调查研究.全年级共有名学生,男女生人数之比为,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为

(1)求抽取的男学生人数和女学生人数;

(2)通过对被抽取的学生的问卷调查,得到如下列联表:

 

否定

肯定

总计

男生

 

10

 

女生

30

 

 

总计

 

 

 

①完成列联表;

②能否有的把握认为态度与性别有关?

(3)若一班有名男生被抽到,其中人持否定态度,人持肯定态度;二班有名女生被抽到,其中人持否定态度,人持肯定态度.

现从这人中随机抽取一男一女进一步询问所持态度的原因,求其中恰有一人持肯定态度一人持否定态度的概率.

解答时可参考下面临界值表:

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

 

查看答案和解析>>

某校为了解高三年级不同性别的学生对体育课改上自习课的态度(肯定还是否定),进行了如下的调查研究.全年级共有名学生,男女生人数之比为,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为
(1)求抽取的男学生人数和女学生人数;
(2)通过对被抽取的学生的问卷调查,得到如下列联表:

 
否定
肯定
总计
男生
 
10
 
女生
30
 
 
总计
 
 
 
①完成列联表;
②能否有的把握认为态度与性别有关?
(3)若一班有名男生被抽到,其中人持否定态度,人持肯定态度;二班有名女生被抽到,其中人持否定态度,人持肯定态度.
现从这人中随机抽取一男一女进一步询问所持态度的原因,求其中恰有一人持肯定态度一人持否定态度的概率.
解答时可参考下面临界值表:

0.10
0.05
0.025
0.010
0.005

2.706
3.841
5.024
6.635
7.879

查看答案和解析>>

某校为了解高三年级不同性别的学生对体育课改上自习课的态度(肯定还是否定),进行了如下的调查研究.全年级共有名学生,男女生人数之比为,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为
(1)求抽取的男学生人数和女学生人数;
(2)通过对被抽取的学生的问卷调查,得到如下列联表:
 
否定
肯定
总计
男生
 
10
 
女生
30
 
 
总计
 
 
 
①完成列联表;
②能否有的把握认为态度与性别有关?
(3)若一班有名男生被抽到,其中人持否定态度,人持肯定态度;二班有名女生被抽到,其中人持否定态度,人持肯定态度.
现从这人中随机抽取一男一女进一步询问所持态度的原因,求其中恰有一人持肯定态度一人持否定态度的概率.
解答时可参考下面临界值表:

0.10
0.05
0.025
0.010
0.005

2.706
3.841
5.024
6.635
7.879

查看答案和解析>>

 

一、选择题(本大题共12个小题,每小题5分,共60分)

    1―5  CABDC   6―10  DCCBB   11―12AB

二、填空题:

13.9

14.

15.(1,0)

16.420

三、解答题:

17.解:(1)

   (2)由(1)知,

       

18.解: 记“第i个人过关”为事件Aii=1,2,3),依题意有

   

   (1)设“恰好二人过关”为事件B,则有

    且彼此互斥。

于是

=

   (2)设“有人过关”事件G,“无人过关”事件互相独立,

  

19.解法:1:(1)

   (2)过E作EF⊥PC,垂足为F,连结DF。             (8分)

由Rt△EFC∽

解法2:(1)

   (2)设平面PCD的法向量为

        则

           解得   

AC的法向量取为

角A―PC―D的大小为

20.(1)由已知得    

  是以a2为首项,以

    (6分)

   (2)证明:

   

   (2)证明:由(1)知,

 

21.解:(1)

又直线

(2)由(1)知,列表如下:

x

f

+

0

0

+

fx

学科网(Zxxk.Com)

极大值

学科网(Zxxk.Com)

极小值

学科网(Zxxk.Com)

 

  所以,函数fx)的单调增区间是

 

22.解:(1)设直线l的方程为

因为直线l与椭圆交点在y轴右侧,

所以  解得2

l直线y截距的取值范围为。          (4分)

   (2)①(Ⅰ)当AB所在的直线斜率存在且不为零时,

设AB所在直线方程为

解方程组           得

所以

所以

因为l是AB的垂直平分线,所以直线l的方程为

 

因此

   又

   (Ⅱ)当k=0或不存在时,上式仍然成立。

综上所述,M的轨迹方程为(λ≠0)。  (9分)

②当k存在且k≠0时,由(1)得

  解得

所以

 

解法:(1)由于

当且仅当4+5k2=5+4k2,即k≠±1时等号成立,

此时,

 

当k不存在时,

 

综上所述,                      (14分)

解法(2):

因为

当且仅当4+5k2=5+4k2,即k≠±1时等号成立,

此时

当k不存在时,

综上所述,