证法三:设=.则 查看更多

 

题目列表(包括答案和解析)

阅读:设Z点的坐标(a,b),r=|
OZ
|,θ是以x轴的非负半轴为始边、以OZ所在的射线为终边的角,复数z=a+bi还可以表示为z=r(cosθ+isinθ),这个表达式叫做复数z的三角形式,其中,r叫做复数z的模,当r≠0时,θ叫做复数z的幅角,复数0的幅角是任意的,当0≤θ<2π时,θ叫做复数z的幅角主值,记作argz.
根据上面所给出的概念,请解决以下问题:
(1)设z=a+bi=r(cosθ+isinθ) (a、b∈R,r≥0),请写出复数的三角形式与代数形式相互之间的转换关系式;
(2)设z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),探索三角形式下的复数乘法、除法的运算法则,请写出三角形式下的复数乘法、除法的运算法则.(结论不需要证明)

查看答案和解析>>

用反证法证明命题:“若直线AB、CD是异面直线,则直线AC、BD也是异面直线”的过程归纳为以下三个步骤:
①则A,B,C,D四点共面,所以AB、CD共面,这与AB、CD是异面直线矛盾;
②所以假设错误,即直线AC、BD也是异面直线;
③假设直线AC、BD是共面直线;
则正确的序号顺序为(  )

查看答案和解析>>

阅读:设Z点的坐标(a,b),r=||,θ是以x轴的非负半轴为始边、以OZ所在的射线为终边的角,复数z=a+bi还可以表示为z=r(cosθ+isinθ),这个表达式叫做复数z的三角形式,其中,r叫做复数z的模,当r≠0时,θ叫做复数z的幅角,复数0的幅角是任意的,当0≤θ<2π时,θ叫做复数z的幅角主值,记作argz.
根据上面所给出的概念,请解决以下问题:
(1)设z=a+bi=r(cosθ+isinθ) (a、b∈R,r≥0),请写出复数的三角形式与代数形式相互之间的转换关系式;
(2)设z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),探索三角形式下的复数乘法、除法的运算法则,请写出三角形式下的复数乘法、除法的运算法则.(结论不需要证明)

查看答案和解析>>

用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,给出了如下四种反设:
(1)假设三内角都不大于60°;
(2)假设三内角都大于60°;
(3)假设三内角至多有一个大于60°;
(4)假设三内角至多有两个大于60°。
则反设正确的序号是(    )。

查看答案和解析>>

(本题14分)阅读:设Z点的坐标(a, b),r=||,θ是以x轴的非负半轴为始边、以OZ所在的射线为终边的角,复数z=a+bi还可以表示为z=r(cosθ+isinθ),这个表达式叫做复数z的三角形式,其中,r叫做复数z的模,当r≠0时,θ叫做复数z的幅角,复数0的幅角是任意的,当0≤θ<2π时,θ叫做复数z的幅角主值,记作argz

根据上面所给出的概念,请解决以下问题:

(1)设z=a+bi =r(cosθ+isinθ) (abÎR,r≥0),请写出复数的三角形式与代数形式相互之间的转换关系式;

(2)设z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),探索三角形式下的复数乘法、除法的运算法则,请写出三角形式下的复数乘法、除法的运算法则.(结论不需要证明)

查看答案和解析>>


同步练习册答案