题目列表(包括答案和解析)
(本题满分10分)已知定义在R上的函数![]()
(1)判断函数
的奇偶性
(2)证明
在
上是减函数
(3)若方程
在
上有解,求
的取值范围?
(本题满分14分)已知定义在R上的函数
,其中a为常数.
(1)若x=1是函数
的一个极值点,求a的值;
(2)若函数
在区间(-1,0)上是增函数,求a的取值范围;
(3)若函数
,在x=0处取得最大值,求正数a的取值范围.
(本题满分10分)已知定义在R上的函数![]()
(1)判断函数
的奇偶性
(2)证明
在
上是减函数
(3)若方程
在
上有解,求
的取值范围?
(本题满分14分)已知定义在R上的函数
,其中a为常数.
(1)若x=1是函数
的一个极值点,求a的值;
(2)若函数
在区间(-1,0)上是增函数,求a的取值范围;
(3)若函数
,在x=0处取得最大值,求正数a的取值范围.
(本题满分16分)已知定义在R上的函数
是奇函数,当
时
,求
的表达式.
1-10.CDBBA CACBD
11.
12. ①③④ 13.-2或1 14.
、
15.2 16.
17.
.
18.
解:(1)由已知
7分
(2)由
10分
由余弦定理得
14分
19.(1)证明:∵PA⊥底面ABCD,BC
平面AC,∴PA⊥BC, 3分
∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC. 5分
(2)解:过C作CE⊥AB于E,连接PE,
∵PA⊥底面ABCD,∴CE⊥面PAB,
∴直线PC与平面PAB所成的角为
, 10分
∵AD=CD=1,∠ADC=60°,∴AC=1,PC=2,
中求得CE=
,∴
. 14分
20.解:(1)由
①,得
②,
②-①得:
. 4分
(2)由
求得
. 7分
∴
,
11分

∴
.
14分
21.解:
(1)由
得c=1 1分
, 4分
|