(Ⅱ)已知实数能使函数上既能取到极大值.又能取到极小值.记所有的实数组成的集合为M.请判断函数的零点个数. 查看更多

 

题目列表(包括答案和解析)

已知定义在R上的函数f(x)=ax3+bx+c(a,b,c∈R),当x=-1时,f(x)取得极大值3,f(0)=1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)已知实数t能使函数f(x)在区间(t,t+3)上既能取到极大值,又能取到极小值,记所有的实数t组成的集合为M.请判断函数的零点个数.

查看答案和解析>>

已知定义在R上的函数f(x)=ax3+bx+c(a,b,c∈R),当x=-1时,f(x)取得极大值3,f(0)=1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)已知实数t能使函数f(x)在区间(t,t+3)上既能取到极大值,又能取到极小值,记所有的实数t组成的集合为M.请判断函数g(x)=
f(x)
x
(x∈M)
的零点个数.

查看答案和解析>>

(2009•台州一模)已知定义在R上的函数f(x)=ax3+bx+c(a,b,c∈R),当x=-1时,f(x)取得极大值3,f(0)=1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)已知实数t能使函数f(x)在区间(t,t+3)上既能取到极大值,又能取到极小值,记所有的实数t组成的集合为M.请判断函数g(x)=
f(x)x
(x∈M)
的零点个数.

查看答案和解析>>

1-10.CDBBA   CACBD

11. 12. ①③④   13.-2或1  14.   15.2  16.  17..

18.

解:(1)由已知            7分

(2)由                                                                   10分

由余弦定理得                          14分

 

19.(1)证明:∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC,                                  3分

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC.                             5分

(2)解:过C作CE⊥AB于E,连接PE,

∵PA⊥底面ABCD,∴CE⊥面PAB,

∴直线PC与平面PAB所成的角为,                                                    10分

∵AD=CD=1,∠ADC=60°,∴AC=1,PC=2,

中求得CE=,∴.                                                  14分

 

20.解:(1)由①,得②,

②-①得:.                              4分

(2)由求得.          7分

   11分

.                                                                 14分

 

21.解:

(1)由得c=1                                                                                     1分

,                                                         4分

市一次模文数参答―1(共2页)

                                                                                        5分

(2)时取得极值.由.                                                                                          8分

,∴当时,

上递减.                                                                                       12分

∴函数的零点有且仅有1个     15分

 

22.解:(1) 设,由已知

,                                        2分

设直线PB与圆M切于点A,

                                                 6分

(2) 点 B(0,t),点,                                                                  7分

进一步可得两条切线方程为:

,                                   9分

,                                          13分

,又时,

面积的最小值为                                                                            15分