精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x)=ax3+bx+c(a,b,c∈R),当x=-1时,f(x)取得极大值3,f(0)=1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)已知实数t能使函数f(x)在区间(t,t+3)上既能取到极大值,又能取到极小值,记所有的实数t组成的集合为M.请判断函数的零点个数.
【答案】分析:(Ⅰ)利用条件当x=-1时,f(x)取得极大值3,即f(-1)=3,f'(-1)=0,以及f(0)=1,三个条件建立方程组,可求f(x)的解析式.
(Ⅱ)要使函数在区间(t,t+3)上既能取到极大值,又能取到极小值,则等价为f'(x)=0在区间(t,t+3)上有两个不同的根,进而实现转化.
解答:解:(1)由f(0)=1得c=1.
又当x=-1时,f(x)取得极大值3,所以f(-1)=3,f'(-1)=0.

得a=1,b=-3
∴f(x)=x3-3x+1.
(2)由f′(x)=3(x-1)(x+1)=0,得x=-1,
在x=1时取得极值.由-1∈(t,t+3),1∈(t,t+3)得-2<t<-1.
∴M=(-2,-1).(8分)
∴当x∈M时,g′(x)<0,
∴g(x)在M上递减.

∴函数的零点有且仅有1个.
点评:本题考查导数与极值之间的关系.利用条件先求出函数的表达式.然后将函数进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案