题目列表(包括答案和解析)
①命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”;
②若P且Q为假命题,则P、Q均为假命题;
③在△ABC中,sinA>sinB的充要条件是A>B;
④不等式的解集为|x|+|x-1|>a的解集为R,则a≤1;
⑤点(x,y)在映射f作用下的象是(2x,
),则在f的作用下,点(1,-1)的原象是(0,2).其中真命题的是________(写出所有真命题的编号)
| x2 |
| 2-m |
| y2 |
| m2-4 |
| x2 |
| 45 |
| y2 |
| 20 |
| x2 |
| 10-m |
| y2 |
| 6-m |
| x2 |
| 5-m |
| y2 |
| 9-m |
| b |
| a |
| x2 |
| a2 |
| y2 |
| b2 |
| 1 |
| 4a |
|
给出下列命题:
①命题“所有的正方形都是矩形”的否定是“所有的正方形都不是矩形”;
②设p、q 为简单命题,则“p且q”为假是“p或q为假的必要而不充分条件;
③函数
的极小值为
,极大
值为
;
④双曲线的渐近线方程是
,则该双曲线的离心率是
.
⑤等差数列![]()
中首项为
,则数列
为等比数列;
其中真命题的序号为 (写出所有真命题的序号)
一、选择题(每小题5分,共50分)

二、填空题(每小题4分,共28分)

三、解答题
18.解:(Ⅰ)由已有



(4分)

(6分)
(Ⅱ)由(1)
且
(8分)
所以
(10分)
(12分)

(14分)
19.解:(Ⅰ)同学甲同学恰好投4次达标的概率
(4分)
(Ⅱ)
可取的值是
(6分)
(8分)
(10分)
的分布列为

3
4
5



(12分)
所以
的数学期望为
(14分)
20.解:(Ⅰ)∵PA⊥底面ABCD,BC
平面AC,∴PA⊥BC
∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC (4分)
(Ⅱ)取CD的中点E,则AE⊥CD,∴AE⊥AB,又PA⊥底面ABCD,∴PA⊥AE
建立如图所示空间直角坐标系,则
A(0,,0,0),P(0,0,
),C(
,0),D(
,0)

,
,
(6分)
易求
为平面PAC的一个法向量.
为平面PDC的一个法向量
(9分)
∴cos
故二面角D-PC-A的正切值为2. (11分)
(Ⅲ)设
,则
,
解得点
,即
(13分)
由
得
(不合题意舍去)或
所以当
为
的中点时,直线
与平面
所成角的正弦值为
(15分)
21.解:(Ⅰ)设直线
的方程为:
由
得
,所以
的方程为
(4分)
由
得
点的坐标为
.
可求得抛物线的标准方程为
.
(6分)
(Ⅱ)设直线
的方程为
,代入抛物线方程并整理得
(8分)
设
则
设
,则



(11分)
当
时上式是一个与
无关的常数.
所以存在定点
,相应的常数是
.
(14分)
22.解:(Ⅰ)当
时
(2分)
在
上递增,在
上递减
所以
在0和2处分别达到极大和极小,由已知有
且
,因而
的取值范围是
.
(4分)
(Ⅱ)当
时,
即
|