题目列表(包括答案和解析)
(本题满分15分)如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=600,PA=AC=a,PB=PD=
,点E在PD上,且PE:ED=2:1.
(1)证明:PA⊥平面ABCD;
(2)求以AC为棱,EAC与DAC为面的二面角
的大小.
(本题满分15分)如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=600,PA=AC=a,PB=PD=
,点E在PD上,且PE:ED=2:1.
(1)证明:PA⊥平面ABCD;
(2)求以AC为棱,EAC与DAC为面的二面角
的大小.
(本题满分15分)如图,已知四棱锥
,底面
为菱形,
平面
,
,
分别是
的中点.
(Ⅰ)证明:
;
(Ⅱ)若
为
上的动点,
与平面
所成最大角的正切值为
,求二面角
的余弦值.
(本小题满分15分)如图,在四棱锥
中,底面
是正方形,侧棱
底面
,
,
是
的中点,作
交
于点![]()
![]()
(1)证明:
平面
.
(2)证明:
平面
.
(3)求二面角
的大小.
一、选择题(每小题5分,共50分)

二、填空题(每小题4分,共28分)

三、解答题
18.解:(Ⅰ)由已有



(4分)

(6分)
(Ⅱ)由(1)
且
(8分)
所以
(10分)
(12分)

(14分)
19.解:(Ⅰ)同学甲同学恰好投4次达标的概率
(4分)
(Ⅱ)
可取的值是
(6分)
(8分)
(10分)
的分布列为

3
4
5



(12分)
所以
的数学期望为
(14分)
20.解:(Ⅰ)∵PA⊥底面ABCD,BC
平面AC,∴PA⊥BC
∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC (4分)
(Ⅱ)取CD的中点E,则AE⊥CD,∴AE⊥AB,又PA⊥底面ABCD,∴PA⊥AE
建立如图所示空间直角坐标系,则
A(0,,0,0),P(0,0,
),C(
,0),D(
,0)

,
,
(6分)
易求
为平面PAC的一个法向量.
为平面PDC的一个法向量
(9分)
∴cos
故二面角D-PC-A的正切值为2. (11分)
(Ⅲ)设
,则
,
解得点
,即
(13分)
由
得
(不合题意舍去)或
所以当
为
的中点时,直线
与平面
所成角的正弦值为
(15分)
21.解:(Ⅰ)设直线
的方程为:
由
得
,所以
的方程为
(4分)
由
得
点的坐标为
.
可求得抛物线的标准方程为
.
(6分)
(Ⅱ)设直线
的方程为
,代入抛物线方程并整理得
(8分)
设
则
设
,则



(11分)
当
时上式是一个与
无关的常数.
所以存在定点
,相应的常数是
.
(14分)
22.解:(Ⅰ)当
时
(2分)
在
上递增,在
上递减
所以
在0和2处分别达到极大和极小,由已知有
且
,因而
的取值范围是
.
(4分)
(Ⅱ)当
时,
即
|