16.班主任准备从班上10名男团员.6名女团员中选3人组成一个主委组.则选到的3名同学中既有男团员又有女团员的不同选法共有 种 查看更多

 

题目列表(包括答案和解析)

精英家教网某学校为了了解高三学生月考的数学成绩,从甲、乙两班各抽取10名学生,并统计他们的成绩(成绩均为整数且满分为100分),成绩如下:
甲班:97,81,91,80,89,79,92,83,85,93
乙班:60,80,87,77,96,64,76,60,84,96
(Ⅰ)根据抽取结果填写茎叶图,并根据所填写的茎叶图,对甲、乙两班的成绩做对比,写出两个统计结论;
(Ⅱ)若可计算得抽取甲班的10名学生的数学成绩的平均值为
.
x
=87
,将10名甲班学生的数学成绩依次输入,按程序框图进行运算,问输出的S大小为多少?并说明S的统计学意义;
(Ⅲ)学校规定成绩在90分以上为优秀,现准备从甲、乙两班所抽取的学生中选取两名成绩为优秀的学生参加数学竞赛,求至少有一名乙班学生参加数学竞赛的概率.

查看答案和解析>>

某学校为了了解高三学生月考的数学成绩,从甲、乙两班各抽取10名学生,并统计他们的成绩(成绩均为整数且满分为100分),成绩如下:
甲班:97,81,91,80,89,79,92,83,85,93
乙班:60,80,87,77,96,64,76,60,84,96
(Ⅰ)根据抽取结果填写茎叶图,并根据所填写的茎叶图,对甲、乙两班的成绩做对比,写出两个统计结论;
(Ⅱ)若可计算得抽取甲班的10名学生的数学成绩的平均值为,将10名甲班学生的数学成绩依次输入,按程序框图进行运算,问输出的S大小为多少?并说明S的统计学意义;
(Ⅲ)学校规定成绩在90分以上为优秀,现准备从甲、乙两班所抽取的学生中选取两名成绩为优秀的学生参加数学竞赛,求至少有一名乙班学生参加数学竞赛的概率.

查看答案和解析>>

从甲、乙两个班级各随机抽取10名同学的数学成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.
(I)试完成甲班制取10名同学数学成绩频率分布表,并估计甲班的及格率.
分组 频数 频率
[70,80)
[80,90)
[90,100)
[100,110)
(II)从每班抽取的同学中各抽取一人,求至少有一人及格的概率.

查看答案和解析>>

为检测学生的体温状况,随机抽取甲,乙两个班各10名同学,测量他们的体温(单位0.1摄氏度)获得体温数据的茎叶图,如图所示.
(1)计算乙班的样本平均数,方差;
(2)现在从甲班中随机抽取两名体温不低于36.5摄氏度的同学,求体温为37.1摄氏度的同学被抽到的概率.

查看答案和解析>>

随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差;
(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.

查看答案和解析>>

 

一、选择题(本大题共12个小题,每小题5分,共60分)

    1―5  BCBAB    6―10  CDBDD   11―12AB

20090323

13.9

14.

15.(1,0)

16.420

三、解答题:

17.解:(1)

   (2)由(1)知,

       

18.解:设“通过第一关”为事件A1,“补过且通过第一关”为事件A2,“通过第二关”为事件B1,“补过且通过第二关”为事件B2。             (2分)

   (1)不需要补过就可获得奖品的事件为A=A1?B1,又A1与B1相互独立,则P(A)=P

(A1?B1)=P(A1)?P(B1)=。故他不需要补过就可获得奖品的概率为

(6分)

   (2)由已知得ξ=2,3,4,注意到各事件之间的独立性与互斥性,可得

       

19.解法:1:(1)

   (2)过E作EF⊥PC,垂足为F,连结DF。             (8分)

由Rt△EFC∽

解法2:(1)

   (2)设平面PCD的法向量为

        则

           解得   

AC的法向量取为

 角A―PC―D的大小为

20.(1)由已知得    

  是以a2为首项,以

    (6分)

   (2)证明:

   

21:解(1)由线方程x+2y+10-6ln2=0知,

    直线斜率为

  

    所以   解得a=4,b=3。    (6分)

   (2)由(1)得

22.解:(1)设直线l的方程为

因为直线l与椭圆交点在y轴右侧,

所以  解得2

l直线y截距的取值范围为。          (4分)

   (2)①(Ⅰ)当AB所在的直线斜率存在且不为零时,

设AB所在直线方程为

解方程组           得

所以

所以

因为l是AB的垂直平分线,所以直线l的方程为

 

因此

 又

   (Ⅱ)当k=0或不存在时,上式仍然成立。

综上所述,M的轨迹方程为(λ≠0)。  (9分)

②当k存在且k≠0时,由(1)得

  解得

所以

解法:(1)由于

当且仅当4+5k2=5+4k2,即k≠±1时等号成立,

此时,

 

当k不存在时,

综上所述,                      (14分)

解法(2):

因为

当且仅当4+5k2=5+4k2,即k≠±1时等号成立,

此时

当k不存在时,

综上所述,