此时平面. --------6分 查看更多

 

题目列表(包括答案和解析)

(本小题满分10分)某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1800元,面粉的保管等其他费用为平均每吨3元,购面粉每次需支付运费900元。

(1)求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?

(2)若提供面粉的公司规定:当一次购买面粉不少于210吨时,其价格可享受九折优惠,问该厂是否考虑利用此优惠条件?请说明理由。

 

查看答案和解析>>

(本小题满分13分)

由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高.然而也有部分公众对该活动的实际效果与负面影响提出了疑问.对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:

支持

保留

不支持

20岁以下

800

450

200

20岁以上(含20岁)

100

150

300

(Ⅰ)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从“支持”态度的人中抽取了45人,求的值;

(Ⅱ)在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中任意选取2人,求至少有人20岁以下的概率;

(Ⅲ)在接受调查的人中,有8人给这项活动打出的分数如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8个人打出的分数看作一个总体,从中任取个数,求该数与总体平均数之差的绝对值超过0.6的概率.

查看答案和解析>>

如图,在竖直平面内有一个“游戏滑道”,空白部分表示光滑滑道,黑色正方形表示障碍物,自上而下第一行有1个障碍物,第二行有2个障碍物,…,依此类推.一个半径适当的光滑均匀小球从入口A投入滑道,小球将自由下落,已知小球每次遇到正方形障碍物上顶点时,向左、右两边下落的概率都是.记小球遇到第n行第m个障碍物(从左至右)上顶点的概率为P(n,m).
(Ⅰ)求P(4,1),P(4,2)的值,并猜想P(n,m)的表达式(不必证明);
(Ⅱ)已知f(x)=,设小球遇到第6行第m个障碍物(从左至右)上顶点时,得到的分数为ξ=f(m),试求ξ的分布列及数学期望.

查看答案和解析>>

如图,在竖直平面内有一个“游戏滑道”,空白部分表示光滑滑道,黑色正方形表示障碍物,自上而下第一行有1个障碍物,第二行有2个障碍物,…,依此类推.一个半径适当的光滑均匀小球从入口A投入滑道,小球将自由下落,已知小球每次遇到正方形障碍物上顶点时,向左、右两边下落的概率都是.记小球遇到第n行第m个障碍物(从左至右)上顶点的概率为P(n,m).
(Ⅰ)求P(4,1),P(4,2)的值,并猜想P(n,m)的表达式(不必证明);
(Ⅱ)已知f(x)=,设小球遇到第6行第m个障碍物(从左至右)上顶点时,得到的分数为ξ=f(m),试求ξ的分布列及数学期望.

查看答案和解析>>

附加题:(选做题:在下面A、B、C、D四个小题中只能选做两题)
A.选修4-1:几何证明选讲
如图,已知AB、CD是圆O的两条弦,且AB是线段CD的垂直平分线,
已知AB=6,CD=2
5
,求线段AC的长度.
B.选修4-2:矩阵与变换
已知二阶矩阵A有特征值λ1=1及对应的一个特征向量e1=
1
1
和特征值λ2=2及对应的一个特征向量e2=
1
0
,试求矩阵A.
C.选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是
y=sinθ+1
x=cosθ
(θ是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.
D.选修4-5:不等式选讲
已知关于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)当a=1时,求此不等式的解集;
(2)若此不等式的解集为R,求实数a的取值范围.

查看答案和解析>>


同步练习册答案