根据上表给出的数列{an}的规律,表中的?应填 查看更多

 

题目列表(包括答案和解析)

对于各项均为正数且各有m项的数列{an},{bn},按如下方法定义数列{tn}:t0=0,
tn=
tn-1-an+bntn-1an
bntn-1an
(n=1,2…m),并规定数列{an}到{bn}的“并和”为Sab=a1+a2+…+an+tm
(Ⅰ)若m=3,数列{an}为3,7,2;数列{bn}为5,4,6,试求出t1、t2、t3的值以及数列{an}到{bn}的并和Sab
(Ⅱ)若m=4,数列{an}为3,2,3,4;数列{bn}为6,1,x,y,且Sab=17,求证:y≤5;
(Ⅲ)若m=6,下表给出了数列{an},{bn}:
精英家教网
如果表格中各列(整列)的顺序可以任意排列,每种排列都有相应的并和Sab,试求Sab的最小值,并说明理由.

查看答案和解析>>

对于各项均为正数且各有m项的数列{an},{bn},按如下方法定义数列{tn}:t=0,
(n=1,2…m),并规定数列{an}到{bn}的“并和”为Sab=a1+a2+…+an+tm
(Ⅰ)若m=3,数列{an}为3,7,2;数列{bn}为5,4,6,试求出t1、t2、t3的值以及数列{an}到{bn}的并和Sab
(Ⅱ)若m=4,数列{an}为3,2,3,4;数列{bn}为6,1,x,y,且Sab=17,求证:y≤5;
(Ⅲ)若m=6,下表给出了数列{an},{bn}:

如果表格中各列(整列)的顺序可以任意排列,每种排列都有相应的并和Sab,试求Sab的最小值,并说明理由.

查看答案和解析>>

已知3,5,21是各项均为整数的无穷等差数列{an}的三项,若数列{an}的首项为a1,公差为d,给出关于数列{an}的4个命题:1满足条件的d有8个不同的取值;2存在满足条件的数列{an},使得对任意的n∈N*,都有S2n=4Sn成立;3对任意满足条件的d,存在a1,使得99一定是数列{an}中的一项;4对任意满足条件的d,存在a1,使得30一定是数列{an}中的一项;则其中所有正确命题的序号是
 

查看答案和解析>>

已知3,5,21是各项均为整数的无穷等差数列{an}的三项,若数列{an}的首项为a1,公差为d,给出关于数列{an}的4个命题:1满足条件的d有8个不同的取值;2存在满足条件的数列{an},使得对任意的n∈N*,都有S2n=4Sn成立;3对任意满足条件的d,存在a1,使得99一定是数列{an}中的一项;4对任意满足条件的d,存在a1,使得30一定是数列{an}中的一项;则其中所有正确命题的序号是   

查看答案和解析>>

若数列{an}的前n项由如图所示的流程图输出依次给出,则数列{an}的通项公式an等于

A.n(n-1)            B.n(n+1)             C.n-1                 D.n

查看答案和解析>>


同步练习册答案