题目列表(包括答案和解析)
已知
,函数
的
.
(1)求
的值.
(12分)已知
,函数
,(
为自然对数的底数)
(I)当
时,求函数
的单调递增区间;
(Ⅱ)若函数
在(-1,1)上单调递增,求
的取值范围;
(Ⅲ)函数
能否为
上的单调函数?若能,求出
的取值范围;若不能,请说明理由。
已知
,函数
,在
是一个单调函数。
(1)试问
在
的条件下,在
能否是单调递减函数?说明理由。
(2)若
在
上是单调递增函数,求实数a的取值范围。
(3)设
且
,比较
与
的大小。
已知
,函数
,当
时,
.(1)求常数
的值
(2)设
,求
的单调区间
说明:
一、本解答给出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则。
二、对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定后续部分的给分,但不得超过该部分正确解答所给分数的一半;如果后续部分的解答存在较严重的错误,则不再给分。
三、解答右端所注分数,表示考生正确做到这一步应得的累加分数。
四、每题只给整数分数,选择题和填空题不给中间分。
一、选择题:
题号
1
2
3
4
5
6
7
8
9
10
答案
B
C
C
D
A
A
B
C
B
D
二、填空题:
11.40.6,1.1 12.
13.
14.30 15.
16.(1,1),(2,2),(3,4),(4,8)
三、解答题:
17.(Ⅰ)
, ①
…………………2分
又
, ∴
②
……………… 4分
由①、②得
…………………………………………………………… 6分
(Ⅱ)
……………………………………… 8分
…………………………………………………………………… 10分

…………………………………………………………………………12分
18.(Ⅰ)设点
,则
,
,
,又
,
,∴椭圆的方程为:
…………………………………………7分
(Ⅱ)当过
直线
的斜率不存在时,点
,则
;
当过
直线
的斜率存在时,设斜率为
,则直线
的方程为
,
设
,由
得:
…………………………………………10分
……13分
综合以上情形,得:
……………………………………………………14分
|