23. 解:在区间[1.e]上是增函数.∴ 最大值是+1.最小值是. ------2分=x2+lnx-x3.则F'(x)=x+-2x2=. --------4分∵x>1.∴F'在区间上单调递减.-------5分又 F(1)=-<0.∴ 在区间<0.即 x2+lnx<x3.∴函数f =x3的下方. --------7分(Ⅲ)当n=1时.不等式成立. --------8分当n≥2时.[h (x)] n-h (x n)=(x+)n-(x n+)=[(x n-2+)+(x n-4+)+-+(x n-2+) ]. -----10分由已知x>0.[h (x)] n-h (x n)≥++-+=2n-2.∴[h (x)] n+2≥h (x n)+2 n --------12分 查看更多

 

题目列表(包括答案和解析)

若函数f(x)同时满足下列三个性质:①偶函数;②在区间(0,1)上是增函数;③有最小值,则y=f(x)的解析式可以是(  )

查看答案和解析>>

若函数f(x)同时满足下列三个性质:①偶函数;②在区间(0,1)上是增函数;③有最小值,则y=f(x)的解析式可以是( )
A.y=ex+e-x
B.y=1-x2
C.y=sin
D.

查看答案和解析>>

若函数f(x)同时满足下列三个性质:①偶函数;②在区间(0,1)上是增函数;③有最小值,则y=f(x)的解析式可以是


  1. A.
    y=ex+e-x
  2. B.
    y=1-x2
  3. C.
    y=sinx
  4. D.
    数学公式

查看答案和解析>>

已知

(1)求的单调区间;

(2)证明:当时,恒成立;

(3)任取两个不相等的正数,且,若存在使成立,证明:

【解析】(1)g(x)=lnx+=        (1’)

当k0时,>0,所以函数g(x)的增区间为(0,+),无减区间;

当k>0时,>0,得x>k;<0,得0<x<k∴增区间(k,+)减区间为(0,k)(3’)

(2)设h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 当x变化时,h(x),的变化情况如表

x

1

(1,e)

e

(e,+)

 

0

+

h(x)

e-2

0

所以h(x)0, ∴f(x)2x-e                    (5’)

设G(x)=lnx-(x1) ==0,当且仅当x=1时,=0所以G(x) 为减函数, 所以G(x)  G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,综上,当x1时, 2x-ef(x)恒成立.

(3) ∵=lnx+1∴lnx0+1==∴lnx0=-1      ∴lnx0 –lnx=-1–lnx===(10’)  设H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函数,并且H(t)在t=1处有意义, 所以H(t) <H(1)=0∵=

∴lnx0 –lnx>0, ∴x0 >x

 

查看答案和解析>>


同步练习册答案