解(1):△ABC的内角为A+B+C= 查看更多

 

题目列表(包括答案和解析)

△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A-C)+cosB=1,a=2c,求c

【解析】解:因为

 

查看答案和解析>>

已知△ABC的内角A,B,C的对边分别为a,b,c,下列说法中:①在△ABC中,a=x,b=2,B=45°,若该三角形有两解,则x取值范围是2<x<2
2
;②在△ABC中,若b=8,c=5,A=60°,则△ABC的外接圆半径等于
14
3
3
;③在△ABC中,若c=5,
cosA
cosB
=
b
a
=
4
3
,则△ABC的内切圆的半径为2;④在△ABC中,若AB=4,AC=7,BC=9,则BC边的中线AD=
7
2
;⑤设三角形ABC的BC边上的高AD=BC,a、b、c分别表示角A、B、C对应的三边,则
b
c
+
c
b
的取值范围是[2,
5
]
.其中正确说法的序号是
①④⑤
①④⑤
(注:把你认为是正确的序号都填上).

查看答案和解析>>

已知△ABC的内角A,B,C的对边分别为a,b,c,下列说法中:①在△ABC中,a=x,b=2,B=45°,若该三角形有两解,则x取值范围是2<x<2
2
;②在△ABC中,若b=8,c=5,A=60°,则△ABC的外接圆半径等于
14
3
3
;③在△ABC中,若c=5,
cosA
cosB
=
b
a
=
4
3
,则△ABC的内切圆的半径为2;④在△ABC中,若AB=4,AC=7,BC=9,则BC边的中线AD=
7
2
;⑤设三角形ABC的BC边上的高AD=BC,a、b、c分别表示角A、B、C对应的三边,则
b
c
+
c
b
的取值范围是[2,
5
]
.其中正确说法的序号是______(注:把你认为是正确的序号都填上).

查看答案和解析>>

已知△ABC的内角A,B,C的对边分别为a,b,c,下列说法中:①在△ABC中,a=x,b=2,B=45°,若该三角形有两解,则x取值范围是;②在△ABC中,若b=8,c=5,A=60°,则△ABC的外接圆半径等于;③在△ABC中,若c=5,,则△ABC的内切圆的半径为2;④在△ABC中,若AB=4,AC=7,BC=9,则BC边的中线;⑤设三角形ABC的BC边上的高AD=BC,a、b、c分别表示角A、B、C对应的三边,则的取值范围是.其中正确说法的序号是    (注:把你认为是正确的序号都填上).

查看答案和解析>>

已知△ABC的三个内角A、B、C所对的边分别为a、b、c,向量

(Ⅰ)求角A的大小;

(Ⅱ)若,试判断b·c取得最大值时△ABC形状.

【解析】本试题主要考查了解三角形的运用。第一问中利用向量的数量积公式,且由

(2)问中利用余弦定理,以及,可知,并为等边三角形。

解:(Ⅰ)

     ………………………………6分

(Ⅱ)

………………………………8分

……………10分

 

查看答案和解析>>


同步练习册答案