如图.椭圆长轴端点为A.B.O为椭圆中心.F为椭圆的右焦点.且.. (1)求椭圆的标准方程. (2)记椭圆的上顶点为M.直线L交椭圆 于P.两点.问:是否存在直线L.使点F 恰为的垂心?若存在.求出L的方程, 若不存在.说明理由. 查看更多

 

题目列表(包括答案和解析)

如图,椭圆长轴端点为点A、B,O为椭圆中心,F为椭圆的右焦点,且·=1,| |=1.

(1)求椭圆的标准方程;

(2)记椭圆的上顶点为M,直线l交椭圆于P、Q两点,问:是否存在直线l,使点F恰为△PQM的垂心?若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

如图,已知椭圆长轴端点A、B,弦EF与AB交于点D,O为中心,且|
OD
|=1,
DF
=2
ED
,∠FDO=
π
4
,试建立适当的坐标系解决以下问题:
(1)求椭圆的长轴长的取值范围;
(2)若D为椭圆的焦点,求椭圆的方程.

查看答案和解析>>

如图,已知椭圆数学公式(a>b>0),M为椭圆上的一个动点,F1、F2分别为椭圆的左、右焦点,A、B分别为椭圆的一个长轴端点与短轴的端点.当MF2⊥F1F2时,原点O到直线MF1的距离为数学公式|OF1|.
(1)求a,b满足的关系式;
(2)过F2作与直线AB垂直的直线,交椭圆于P、Q两点,当三角形PQF1面积为20数学公式时,求此时椭圆的方程;
(3)当点M在椭圆上变化时,求证:∠F1MF2的最大值为数学公式

查看答案和解析>>

如图,已知椭圆(a>b>0),M为椭圆上的一个动点,F1、F2分别为椭圆的左、右焦点,A、B分别为椭圆的一个长轴端点与短轴的端点.当MF2⊥F1F2时,原点O到直线MF1的距离为|OF1|.
(1)求a,b满足的关系式;
(2)当点M在椭圆上变化时,求证:∠F1MF2的最大值为
(3)设圆x2+y2=r2(0<r<b),G是圆上任意一点,过G作圆的切线交椭圆于Q1,Q2两点,当OQ1⊥OQ2时,求r的值.(用b表示)

查看答案和解析>>

如图,已知椭圆(a>b>0),M为椭圆上的一个动点,F1、F2分别为椭圆的左、右焦点,A、B分别为椭圆的一个长轴端点与短轴的端点.当MF2⊥F1F2时,原点O到直线MF1的距离为|OF1|.
(1)求a,b满足的关系式;
(2)过F2作与直线AB垂直的直线,交椭圆于P、Q两点,当三角形PQF1面积为20时,求此时椭圆的方程;
(3)当点M在椭圆上变化时,求证:∠F1MF2的最大值为

查看答案和解析>>


同步练习册答案