15.(理)如果P1.P2.-.P8是抛物线上的点.它们的横坐标依次为.F是抛物线的焦点.若= . 查看更多

 

题目列表(包括答案和解析)

如果P1,P2,…,P9是抛物线y2=4x上的点,它们的横坐标x1,x2,…,x9依次成等差数列,F是抛物线的焦点,若x1+x9=2,则|P1F|+|P2F|+…+|P9F|=
18
18

查看答案和解析>>

(2012•普陀区一模)设点F是抛物L:y2=2px(p>0)的焦点,P1,P2,…,Pn是抛物线L上的n个不同的点n(n≥3,n∈N*).
(1)当p=2时,试写出抛物线L上三点P1、P2、P3的坐标,时期满足|
FP1
|+|
FP2
|+|
FP3
|=6

(2)当n≥3时,若
FP1
+
FP2
+…+
FPn
=
0
,求证:|
FP1
|+|
FP2
|+…+|
FPn
|=np

(3)当n>3时,某同学对(2)的逆命题,即:“若|
FP1
|+| 
FP2
|+…+|  
FPN
|=np
,则
FP1
+
FP2
+…+
FPN
=
0
”开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
1.试构造一个说明该命题确实是假命题的反例;
2.对任意给定的大于3的正整数n,试构造该假命题反例的一般形式,并说明你的理由:
3.如果补充一个条件后能使该命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由.

查看答案和解析>>

设点F是抛物L:y2=2px(p>0)的焦点,P1,P2,…,Pn是抛物线L上的n个不同的点n(n≥3,n∈N*).
(1)当p=2时,试写出抛物线L上三点P1、P2、P3的坐标,时期满足
(2)当n≥3时,若,求证:
(3)当n>3时,某同学对(2)的逆命题,即:“若,则”开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
1.试构造一个说明该命题确实是假命题的反例;
2.对任意给定的大于3的正整数n,试构造该假命题反例的一般形式,并说明你的理由:
3.如果补充一个条件后能使该命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由.

查看答案和解析>>

设点F是抛物L:y2=2px(p>0)的焦点,P1,P2,…,Pn是抛物线L上的n个不同的点n(n≥3,n∈N*).
(1)当p=2时,试写出抛物线L上三点P1、P2、P3的坐标,时期满足数学公式
(2)当n≥3时,若数学公式,求证:数学公式
(3)当n>3时,某同学对(2)的逆命题,即:“若数学公式,则数学公式”开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
1.试构造一个说明该命题确实是假命题的反例;
2.对任意给定的大于3的正整数n,试构造该假命题反例的一般形式,并说明你的理由:
3.如果补充一个条件后能使该命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由.

查看答案和解析>>

(2013•牡丹江一模)已知P1、P2、…、P2013是抛物线y2=4x上的点,它们的横坐标依次为x1、x2、…、x2013,F是抛物线的焦点,若x1+x2+…+x2013=10,则|P1F|+|P2F|+…|P2013F|=
2023
2023

查看答案和解析>>

 

一、选择题

1―5 CADBA    6―10 CBABD    11―12 CC

二、填空题

13.(理)(文)(―1,1)    14.    15.(理)18(文)(1,0)

16.①③

三、解答题

17.解:(1)由题意得   ………………2分

   

   (2)由可知A、B都是锐角,   …………7分

   

    这时三角形为有一顶角为120°的等腰三角形   …………12分

18.(理)解:(1)ξ的所有可能的取值为0,1,2,3。  ………………2分

   

   (2)   ………………12分

   (文)解:(1);  ………………6分

   (2)因为

      …………10分

    所以   …………12分

19.解:(1),   ………………1分

    依题意知,   ………………3分

   (2)令   …………4分

     …………5分

    所以,…………7分

   (3)由上可知

    ①当恒成立,

    必须且只须, …………8分

   

     则   ………………9分

    ②当……10分

    要使当

    综上所述,t的取值范围是   ………………12分

20.解法一:(1)取BB1的中点D,连CD、AD,则∠ACD为所求。…………1分

   

   (2)方法一 作CE⊥AB于E,C1E1⊥A1B1于E1,连EE1

则AB⊥面CC1E1E,因此平面PAB⊥面CC1E1E。

因为A1B1//AB,所以A1B1//平面PAB。则只需求点E1到平面PAB的距离。

作E1H⊥EP于H,则E1H⊥平面PAB,则E1H即为所求距离。  …………6分

求得 …………8分

方法二:设B1到平面PAB的距离为h,则由

  ………………8分

   (3)设平面PAB与平面PA1B1的交线为l,由(2)知,A1B1//平面PAB,

则A1B1//l,因为AB⊥面CC1E1E,则l⊥面CC1E1E,

所以∠EPE1就是二面有AB―P―A1B的平面角。 ………………9分

要使平面PAB⊥平面PA1B1,只需∠EPE1=90°。  ………………10分

在矩形CEE1C1中,

解得

解法二:(1)取B1C1的中点O,则A1O⊥B1C1

以O为坐标原点,建立空间直角坐标系如图,

   (2)是平面PAB的一个法向量,

   ………………5分

   ………………6分

  ………………8分

   (3)设P点坐标为(),则

是平面PAB的一个法向量,与(2)同理有

    令

    同理可求得平面PA1B1的一个法向量   ………………10分

    要使平面PAB⊥平面PA1B1,只需

      ………………11分

    解得: …………12分

21.(理)解:(1)由条件得

   

   (2)①设直线m ……5分

   

    ②不妨设M,N的坐标分别为

…………………8分

因直线m的斜率不为零,故

   (文)解:(1)设  …………2分

   

    故所求双曲线方程为:

   (2)设

   

    由焦点半径,  ………………8分

   

22.(1)证明:

    所以在[0,1]上为增函数,   ………………3分

   (2)解:由

   

   (3)解:由(1)与(2)得 …………9分

    设存在正整数k,使得对于任意的正整数n,都有成立,

       ………………10分

   

    ,   ………………11分

    当,   ………………12分

    当    ………………13分

    所在存在正整数

    都有成立.   ………………14分