已知函数(a.b∈R). (1)若函数处取得极值.且极小值为-1.求a.b的值, (2)若.函数图象上的任意一点的切线斜率为k.求k≥-1恒成立时a的取值范围. 查看更多

 

题目列表(包括答案和解析)

.(本小题满分12分)

已知函數f(x)=ln+mx2(m∈R)

(I)求函数f(x)的单调区间;

(II)若m=0,A(a,f(a))、B(b,f(b))是函数f(x)图象上不同的两点,且a>b>0, 为f(x)的导函数,求证:

(III)求证

 

查看答案和解析>>

.(本小题满分12分)
已知函數f(x)=ln+mx2(m∈R)
(I)求函数f(x)的单调区间;
(II)若m=0,A(a,f(a))、B(b,f(b))是函数f(x)图象上不同的两点,且a>b>0, 为f(x)的导函数,求证:
(III)求证

查看答案和解析>>

.(本小题满分12分)
已知函數f(x)=ln+mx2(m∈R)
(I)求函数f(x)的单调区间;
(II)若m=0,A(a,f(a))、B(b,f(b))是函数f(x)图象上不同的两点,且a>b>0, 为f(x)的导函数,求证:
(III)求证

查看答案和解析>>

(本小题满分12分)
已知函数f(x)=x3+ax2+ax-2(a∈R),
(1)若函数f(x)在区间(-∞,+∞)上为单调增函数,求实数a的取值范围;
(2)设A(x1,f(x1))、B(x2,f(x2))是函数f(x)的两个极值点,若直线AB的斜率不小于-,求实数a的取值范围.

查看答案和解析>>

(本小题满分12分)已知二次函数f(x)=ax2+bx+c.

(1)若f(-1)=0,试判断函数f(x)零点的个数;

(2)是否存在a,b,c∈R,使f(x)同时满足以下条件:

①对任意x∈R,f(-1+x)=f(-1-x),且f(x)≥0;

②对任意x∈R,都有0≤f(x)-x≤(x-1)2.若存在,求出a,b,c的值;若不存在,请说

明理由。

(3)若对任意x1、x2∈R且x1<x2,f(x1)≠f(x2),试证明:存在x0∈(x1,x2),使f(x0)=[f(x1)+f(x2)]成立。

 

 

查看答案和解析>>


同步练习册答案