③如果相交, 查看更多

 

题目列表(包括答案和解析)

如果过曲线C1:y=x2-1上一点P的切线l与曲线C2x2+
y2
4
=1
相交所得弦为AB.
(1)证明:弦AB(2)的中点在一条定直线l0上;
(2)与l平行的直线与曲线C1交于E,F两点,过点P且平行于(1)中的直线l0的直线与曲线C1的另一交点为Q,且∠EQP=
π
4
,试判断△EQF的形状,并说明理由.

查看答案和解析>>

①如果平面α内的一条直线m与平面α的一条斜线l在平面α内的射影n垂直,那么m⊥l;
②如果平面α内的一条直线b与平面β垂直,那么α⊥β;
③经过平面α外一点有且只有一条直线与平面α平行;
④对角线相交于一点且被这点平分的四棱柱是平行六面体.
其中逆否命题为真命题的命题个数有(  )

查看答案和解析>>

如果直线y=kx+1与圆x2+y2+kx+my-4=0相交于M、N两点,且点M、N关于直线x+y=0对称,动点P(a,b)在不等式组
kx-y+2≥0
kx-my≤0
y≥0
表示的平面区域的内部及边界上运动,则
(1)不等式组所确定的平面区域的面积为1;
(2)使得目标函数z=b-a取得最大值的最优解有且仅有一个;
(3)目标函数ω=
b-2
a-1
的取值范围是[-2,2];
(4)目标函数p=a2+b2-2b+1的最小值是
1
2

上述说法中正确的是
(1)(4)
(1)(4)
(写出所有正确选项)

查看答案和解析>>

“如果一条直线与一个平面垂直,则称这条直线与这个平面构成一组正交线面对;如果两个平面互相垂直,则称这两个平面构成一组正交平面对.”在正方体的12条棱和6个表面中,能构成正交线面对和正交平面对的组数分别是(    )

A.B.C.D.

查看答案和解析>>

如果方程表示一个圆,

(1)求的取值范围;

(2)当m=0时的圆与直线相交,求直线的倾斜角的取值范围.

 

查看答案和解析>>

Ⅰ选择题

1.C   2. B   3. B   4.B   5.A   6.C   7.A   8.C   9.D   10.A   11.C   12.C

Ⅱ非选择题

13.    14.    15.  16. (2) (3)

17. 解:   (4分)

      (1)增区间为:  ,  减区间为:   (8分)

      (2)   (12分)

18.解:因骰子是均匀的,所以骰子各面朝下的可能性相等,设其中一枚骰子朝下的面上的数字为x,另一枚骰子朝下的面上的数字为y,则的取值如下表:

 

x+y    y

 

x

1

2

3

5

1

2

3

4

6

2

3

4

5

7

3

4

5

6

8

5

6

7

8

10

从表中可得: (8分)

(2)p(=奇数)

                          

………………12分

19.解:(1) 

  ∴    (2分)

恒成立  ∴

  ∴

    (6分)

 (2)

 ∴

 ∴ ①)当 时, 解集为

    ②当 时,解集为

   ③当 时,解集为   (12分)

20.解:PD⊥面ABCD  ∴DA、DC、DP 相互垂直

      建立如图所示空间直角坐标系Oxyz

     (1)     

          ∴ 

           

      ∴     ∴PC⊥DA ,  PC⊥DE

     ∴PC⊥面ADE  (4分)

(2)∵PD⊥面ABCD    PC⊥平面ADE

     ∴PD与PC夹角为所求

       ∴ 所求二面角E-AD-B的大小为  (8分)

(3)由(2)得:四边形ADFE为直角梯形,且 EF=1,DF=,AD=2

   ∴

   ∴ 所求部分体积     (12分)

21.解:(1)

为等比数列 (4分)

      (2) (6分)

(3)   (7分)

       (10分)

∴M≥6   (12分)

22.解:(1)直线AB的方程为:与抛物线的切点设为T

      ∴

 

 

∴抛物线c的方程为:      (3分)

⑵设直线l的方程为:   易如:

,  

①M为AN中点

 由 (Ⅰ)、(Ⅱ)联解,得     代入(Ⅱ)

4

∴直线l的方程为 :     (7分)

 

   (9分)

FM为∠NFA的平分线

     (11分)

     (14分)

 


同步练习册答案