∠的平分线且与轴的交点为N. (1)求椭圆离心率的值, 查看更多

 

题目列表(包括答案和解析)

椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),直线y=k(x-1)经过椭圆C的一个焦点与其相交于点M,N,且点A(1,
3
2
)
在椭圆C上.
(I)求椭圆C的方程;
(II)若线段MN的垂直平分线与x轴相交于点P,问:在x轴上是否存在一个定点Q,使得
|PQ|
|MN|
为定值?若存在,求出点Q的坐标和
|PQ|
|MN|
的值;若不存在,说明理由.

查看答案和解析>>

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
左右两焦点分别为F1,F2,且离心率e=
6
3

(1)设E是直线y=x+2与椭圆的一个交点,求|EF1|+|EF2|取最小值时椭圆的方程;
(2)已知N(0,1),是否存在斜率为k的直线l与(1)中的椭圆交与不同的两点A,B,使得点N在线段AB的垂直平分线上,若存在,求出直线l在y轴上截距的范围;若不存在,说明理由.

查看答案和解析>>

椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),直线y=k(x-1)经过椭圆C的一个焦点与其相交于点M,N,且点A(1,
3
2
)
在椭圆C上.
(I)求椭圆C的方程;
(II)若线段MN的垂直平分线与x轴相交于点P,问:在x轴上是否存在一个定点Q,使得
|PQ|
|MN|
为定值?若存在,求出点Q的坐标和
|PQ|
|MN|
的值;若不存在,说明理由.

查看答案和解析>>

椭圆(a>b>0),直线y=k(x-1)经过椭圆C的一个焦点与其相交于点M,N,且点在椭圆C上.
(I)求椭圆C的方程;
(II)若线段MN的垂直平分线与x轴相交于点P,问:在x轴上是否存在一个定点Q,使得为定值?若存在,求出点Q的坐标和的值;若不存在,说明理由.

查看答案和解析>>

椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),点A为左顶点,点B为上顶点,直线AB的斜率为
3
2
,又直线y=k(x-1)经过椭圆C的一个焦点且与其相交于点M,N.
(Ⅰ)求椭圆C的方程;
(Ⅱ)将|MN|表示为k的函数;
(Ⅲ)线段MN的垂直平分线与x轴相交于点P,又点Q(1,0),求证:
|PQ|
|MN|
为定值.

查看答案和解析>>

Ⅰ选择题

1.C   2. B   3. B   4.B   5.A   6.C   7.A   8.C   9.D   10.A   11.C   12.C

Ⅱ非选择题

13.    14.    15.  16. (2) (3)

17.  解:   (4分)

      (1)增区间  ,  减区间   (8分)

      (2)   (12分)

18.解:因骰子是均匀的,所以骰子各面朝下的可能性相等,设其中一枚骰子朝下的面上的数字为,另一枚骰子朝下的面上的数字为y,则   的取值如下表:

 

x+y    y

x          

1

2

3

5

1

2

3

4

6

2

3

4

5

7

3

4

5

6

8

5

6

7

8

10

从表中可得:

⑴ 

………………8分

的所有可能取值为2,3,4,5,6,7,8,10

的分布列为:

2

3

4

5

6

7

8

10

P

E=2×+3×+4×+5×+6×+7×+8×+10×=5.5………12分

 

19.解:(1)在△CBD中作CO⊥BD.  易证:

CO⊥平面PBD       ∴∠CPO即为所求,

    (4分)

(2)在△PBC中作EF∥BC交PC于F,

又AD∥BC   ∴ AD∥EF   ∴ DF⊥PC

又DP=DC    ∴ F为PC的中点   ∴E为PB的中点,  ∴   (8分)

(3)由(2)得:四边形ADFE为直角梯形,且 EF=1,DF=,AD=2

   ∴

   ∴ 所求部分体积     (12分)

20. 解:(1)

       令

       ∴ 增区间为(0, 1)    减区间为     (4分)

(2)函数图象如图所示:

  ∴ 解为:

  ① a<0,   0个;

   ② a=0,  a>,    1个;

   ③a=,  2个 ;   ④ 0<a<,    3个.     (8分)

(3)

  (12分)

21.解:(1)由

根据待定系数法,可得.得

故:   (4分)

(2)若为奇数,以下证:

由于,即.

①     当为偶数时

②     当为奇数时

                   =

                    

成立.   (12分)

22. 解:⑴

    设M()且

 化简:  (1分)

  ∴    MN为∠F1 MF2的平分线

  ∴

  ∴

     

   (6分)

  ⑵ 代入抛物线

 (9分)

   ∴

①当时,不等式成立

②当

的取值范围为:    (14分)

 


同步练习册答案