例3 点P与定点F(2.0)的距离和它到直线x=8的距离比是1:3,求动点P与定点距离的最值. 错解:设动点P(x,y)到直线x=8的距离为d.则 查看更多

 

题目列表(包括答案和解析)

已知点P与定点F(1,0)的距离和它到定直线的距离之比是1:2,

(Ⅰ)求点P的轨迹C的方程;

(Ⅱ)过点F的直线交曲线C与A,B两点,A,B在上的射影分别为M,N。求证:AN与BM的公共点在轴上。

查看答案和解析>>

在直角坐标系xOy中,动点P与定点F(1,0)的距离和它到定直线x=2的距离之比是,设动点P的轨迹为C1,Q是动圆(1<r<2)上一点.
(1)求动点P的轨迹C1的方程,并说明轨迹是什么图形;
(2)设曲线C1上的三点与点F的距离成等差数列,若线段AC的垂直平分线与x轴的交点为T,求直线BT的斜率k;
(3)若直线PQ与C1和动圆C2均只有一个公共点,求P、Q两点的距离|PQ|的最大值.

查看答案和解析>>

在直角坐标系xOy中,动点P与定点F(1,0)的距离和它到定直线x=2的距离之比是,设动点P的轨迹为C1,Q是动圆(1<r<2)上一点.
(1)求动点P的轨迹C1的方程,并说明轨迹是什么图形;
(2)设曲线C1上的三点与点F的距离成等差数列,若线段AC的垂直平分线与x轴的交点为T,求直线BT的斜率k;
(3)若直线PQ与C1和动圆C2均只有一个公共点,求P、Q两点的距离|PQ|的最大值.

查看答案和解析>>

给定椭圆>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为
(1)求椭圆C的方程和其“准圆”方程.
(2)点P是椭圆C的“准圆”上的一个动点,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点.求证:l1⊥l2

查看答案和解析>>

给定椭圆>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为
(1)求椭圆C的方程和其“准圆”方程.
(2)点P是椭圆C的“准圆”上的一个动点,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点.求证:l1⊥l2

查看答案和解析>>


同步练习册答案