剖析 上述错解.在于在减元过程中.忽视了元素之间的制约关系.将代入(1) 式时.m受k的制约. 查看更多

 

题目列表(包括答案和解析)

下图展示了一个由区间到实数集R的映射过程:区间中的实数m对应数轴上的点M,如图①;将线段围成一个圆,使两端点A、B恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为,在图形变化过程中,图①中线段AM的长度对应于图③中的弧ADM的长度,如图③.图③中直线AM与x轴交于点,则m的象就是n,记作.

给出下列命题:

在定义域上单调递增;

为偶函数;

;

⑤关于的不等式的解集为.

则所有正确命题的序号是      

 

查看答案和解析>>

古希腊数学家丢番图(公元250年前后)在《算术》中就提到了一元二次方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解。在欧几里得的《几何原本》中,形如(a>0,b>0)的方程的图解法是:如图,以和b为两直角边做Rt△ABC,再在斜边上截取,则AD的长就是所求方程的解。

(1)请用含字母a、b的代数式表示AD的长。

(2)请利用你已学的知识说明该图解法的正确性,并说说这种解法的遗憾之处。

查看答案和解析>>

某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为
2
3
,科目B每次考试成绩合格的概率均为
1
2
.假设各次考试成绩合格与否均互不影响.
(Ⅰ)求他不需要补考就可获得证书的概率;
(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求p(ξ=3).

查看答案和解析>>

1202年,意大利数学家斐波那契在他的书中给出了一个关于兔子繁殖的递推关系:Fn=Fn-1+Fn-2,其中Fn表示第n个月的兔子的总对数,F1=F2=1,则F8的值为(  )

查看答案和解析>>

(2013•怀化二模)如图展示了一个由区间(0,k)(其中k为一正实数)到实数集R上的映射过程:区间(0,k)中的实数m对应线段AB上的点M,如图1;将线段AB围成一个离心率为
3
2
的椭圆,使两端点A、B恰好重合于椭圆的一个短轴端点,如图2;再将这个椭圆放在平面直角坐标系中,使其中心在坐标原点,长轴在x轴上,已知此时点A的坐标为(0,1),如图3,在图形变化过程中,图1中线段AM的长度对应于图3中的椭圆弧ADM的长度.图3中直线AM与直线y=-2交于点N(n,-2),则与实数m对应的实数就是n,记作f(m)=n,

现给出下列5个命题①f(
k
2
)=6
;②函数f(m)是奇函数;③函数f(m)在(0,k)上单调递增;④函数f(m)的图象关于点(
k
2
,0)
对称;⑤函数f(m)=3
3
时AM过椭圆的右焦点.其中所有的真命题是(  )

查看答案和解析>>


同步练习册答案