其方程为 剖析 在(3)式成立的前提下.由式.但由两式.故应对所求直线进行检验.上述错解没有做到这一点.故是错误的. 应在上述解题的基础上.再由 查看更多

 

题目列表(包括答案和解析)

(2013•浦东新区二模)方程xcosx=0在区间[-3,6]上解的个数为
4
4

查看答案和解析>>

给出下列命题:
①半径为2,圆心角的弧度数为
1
2
的扇形的周长为5;    
②若向量
a
b
b
c
,则
a
c

③设f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β∈R,且ab≠0,α≠kπ (k∈Z).则f(2012)+f(2013)=0.
④若直线l过点A(2,3),且垂直于向量a=(2,1),则其方程为2x+y-7=0
其中真命题的序号是
①③④
①③④

查看答案和解析>>

已知在平面直角坐标系xOy中,圆C的方程为x2+y2=-2y+3,直线l的方程为ax+y-1=0,则直线l与圆C的位置关系是(  )

查看答案和解析>>

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>

给出下列命题:
①半径为2,圆心角的弧度数为
1
2
的扇形的周长为5;    
②若向量
a
b
b
c
,则
a
c

③设f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β∈R,且ab≠0,α≠kπ (k∈Z).则f(2012)+f(2013)=0.
④若直线l过点A(2,3),且垂直于向量a=(2,1),则其方程为2x+y-7=0
其中真命题的序号是______.

查看答案和解析>>


同步练习册答案