题目列表(包括答案和解析)
设函数f(x),g(x)的定义域分别为M,N,且M是N真子集,若对任意的x∈M,都有g(x)=f(x),则称g(x)是f(x)的“拓展函数”.已知函数f(x)=
log2x,若g(x)是f(x)的“拓展函数”,且g(x)是偶函数,则符合条件的一个g(x)的解析式是________.
设函数f(x),g(x)的定义域分别为M,N,且M是N真子集,若对任意的x∈M,都有g(x)=f(x),则称g(x)是f(x)的“拓展函数”.已知函数f(x)=
log2x,若g(x)是f(x)的“拓展函数”,且g(x)是偶函数,则符合条件的一个g(x)的解析式是________.
设函数f(x),g(x)的定义域分别为Df,Dg,且Df
Dg.若对于任意x
Df,都有g(x)=f(x),则称函数g(x)为f(x)在Dg上的一个延拓函数.设f(x)=2x(x≤0),g(x)为f(x)在R上的一个延拓函数,且g(x)是偶函数,则g(x)=________.
设函数f(x),g(x)的定义域分别为Df,Dg,且Df
Dg.若对于任意x
Df,都有g(x)=f(x),则称函数g(x)为f(x)在Dg上的一个延拓函数.设f(x)=2x(x≥0),g(x)为f(x)在R上的一个延拓函数,且g(x)是偶函数,则g(x)=________.
一、选择题:本大题共8小题,每小题5分,共40分.
1.B 2.C 3.A 4.A 5.B 6.C 7.D 8.C
二、填空题:本大题共6小题,每小题5分,共30分.
12.24;81 13.1;45° 14.2 |x|
注:两空的题目,第一个空2分,第二个空3分.
三、解答题:本大题共6小题,共80分.
15.(本小题满分12分)
(Ⅰ)解:
∵函数f(x)=asinx+bcosx的图象经过点
,
∴
2分 即
4分
解得a=1,b=-
.
6分
(Ⅱ)解:
由(Ⅰ)得f(x)=sinx-
cosx=2sin(
).
8分
∵0≤x≤π,
∴-
9分
当x-
,即x=
时,sin
取得最大值1. 11分
∴f(x)在[0,π]上的最大值为2,此时x=
.
12分
16.(本小题满分13分)
(Ⅰ)解:
记“甲投球命中”为事件A,“乙投球命中”为事件B,则A,B相互独立,
且P(A)=
,P(B)=
.
那么两人均没有命中的概率P=P(
)=P(
)P(
)=
.
-5分
(Ⅱ)解:
记“乙恰好比甲多命中1次”为事件C,“乙恰好投球命中1次且甲恰好投球命中0次”为事件C1,“乙恰好投球命中2次且甲恰好投球命中1次”为事件C2,则C=C1+C2,C1,C2为互斥事件.
,
8分
?
11分
P(C)=P(C1)+P(C2)=
.
13分
17.(本小题满分13分)
解法一:
|