[解]:∵由平移到 查看更多

 

题目列表(包括答案和解析)

f (x)=sin 2x(sin x-cos x)(sin x+cos x),其中x∈R.

(Ⅰ) 该函数的图象可由 的图象经过怎样的平移和伸缩变换得到?

(Ⅱ)若f (θ)=,其中,求cos(θ)的值;

【解析】第一问中,

变换分为三步,①把函数的图象向右平移,得到函数的图象;

②令所得的图象上各点的纵坐标不变,把横坐标缩短到原来的倍,得到函数的图象;

③令所得的图象上各点的横坐标不变,把纵坐标伸长到原来的2倍,得到函数的图象;

第二问中因为,所以,则,又 ,,从而

进而得到结论。

(Ⅰ) 解:

。…………………………………3

变换的步骤是:

①把函数的图象向右平移,得到函数的图象;

②令所得的图象上各点的纵坐标不变,把横坐标缩短到原来的倍,得到函数的图象;

③令所得的图象上各点的横坐标不变,把纵坐标伸长到原来的2倍,得到函数的图象;…………………………………3

(Ⅱ) 解:因为,所以,则,又 ,,从而……2

(1)当时,;…………2

(2)当时;

 

查看答案和解析>>

已知函数f(x)=sin(ωx+φ) (0<φ<π,ω>0)过点,函数y=f(x)图象的两相邻对称轴间的距离为.

(1) 求f(x)的解析式;

(2) f(x)的图象向右平移个单位后,得到函数y=g(x)的图象,求函数g(x)的单调递减区间.

【解析】本试题主要考查了三角函数的图像和性质的运用,第一问中利用函数y=f(x)图象的两相邻对称轴间的距离为.得,所以

第二问中,

   可以得到单调区间。

解:(Ⅰ)由题意得,,…………………1分

代入点,得…………1分

    ∴

(Ⅱ)   的单调递减区间为.

 

查看答案和解析>>

已知函数

(1)求函数的最小正周期和最大值;

(2)求函数的增区间;

(3)函数的图象可以由函数的图象经过怎样的变换得到?

【解析】本试题考查了三角函数的图像与性质的运用。第一问中,利用可知函数的周期为,最大值为

第二问中,函数的单调区间与函数的单调区间相同。故当,解得x的范围即为所求的区间。

第三问中,利用图像将的图象先向右平移个单位长度,再把横坐标缩短为原来的 (纵坐标不变),然后把纵坐标伸长为原来的倍(横坐标不变),再向上平移1个单位即可。

解:(1)函数的最小正周期为,最大值为

(2)函数的单调区间与函数的单调区间相同。

 

所求的增区间为

所求的减区间为

(3)将的图象先向右平移个单位长度,再把横坐标缩短为原来的 (纵坐标不变),然后把纵坐标伸长为原来的倍(横坐标不变),再向上平移1个单位即可。

 

查看答案和解析>>

函数在同一个周期内,当 时,取最大值1,当时,取最小值

(1)求函数的解析式

(2)函数的图象经过怎样的变换可得到的图象?

(3)若函数满足方程求在内的所有实数根之和.

【解析】第一问中利用

又因

       函数

第二问中,利用的图象向右平移个单位得的图象

再由图象上所有点的横坐标变为原来的.纵坐标不变,得到的图象,

第三问中,利用三角函数的对称性,的周期为

内恰有3个周期,

并且方程内有6个实根且

同理,可得结论。

解:(1)

又因

       函数

(2)的图象向右平移个单位得的图象

再由图象上所有点的横坐标变为原来的.纵坐标不变,得到的图象,

(3)的周期为

内恰有3个周期,

并且方程内有6个实根且

同理,

故所有实数之和为

 

查看答案和解析>>


同步练习册答案