题目列表(包括答案和解析)
![]()
如图1,
,
是某地一个湖泊的两条互相垂直的湖堤,线段
和曲线段
分别是湖泊中的一座栈桥和一条防波堤。为观光旅游的需要,拟过栈桥
上某点
分别修建与
,
平行的栈桥
、
,且以
、
为边建一个跨越水面的三角形观光平台
。建立如图2所示的直角坐标系,测得线段
的方程是
,曲线段
的方程是
,设点
的坐标为
,记
。(题中所涉及的长度单位均为米,栈桥和防波堤都不计宽度)
(1)求
的取值范围;
(2)试写出三角形观光平台
面积
关于
的函数解析式,并求出该面积的最小值。
![]()
![]()
如图,已知圆锥体
的侧面积为
,底面半径
和
互相垂直,且
,
是母线
的中点.
![]()
(1)求圆锥体的体积;
(2)异面直线
与
所成角的大小(结果用反三角函数表示).
【解析】本试题主要考查了圆锥的体积和异面直线的所成的角的大小的求解。
第一问中,由题意,
得
,故![]()
从而体积
.2中取OB中点H,联结PH,AH.
由P是SB的中点知PH//SO,则
(或其补角)就是异面直线SO与PA所成角.
由SO
平面OAB,
PH
平面OAB,PH
AH.在
OAH中,由OA
OB得
;
在
中,
,PH=1/2SB=2,
,
则
,所以异面直线SO与P成角的大arctan![]()
解:(1)由题意,
得
,
故
从而体积
.
(2)如图2,取OB中点H,联结PH,AH.
![]()
由P是SB的中点知PH//SO,则
(或其补角)就是异面直线SO与PA所成角.
由SO
平面OAB,
PH
平面OAB,PH
AH.
在
OAH中,由OA
OB得
;
在
中,
,PH=1/2SB=2,
,
则
,所以异面直线SO与P成角的大arctan![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com