设函数 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=(x-a)(x-b)(x-c)(a、b、c是两两不等的常数),则
a
f′(a)
+
b
f′(b)
+
c
f′(c)
=
 

查看答案和解析>>

设函数f(x)=cos(2x+
π
3
)+sin2x.
(1)求函数f(x)的最大值和最小正周期.
(2)设A,B,C为△ABC的三个内角,若cosB=
1
3
,f(
C
3
)=-
1
4
,且C为非钝角,求sinA.

查看答案和解析>>

设函数f(x)=
ax2+bx+c
(a<0)
的定义域为D,若所有点(s,f(t))(s,t∈D)构成一个正方形区域,则a的值为(  )
A、-2B、-4
C、-8D、不能确定

查看答案和解析>>

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=
π
8

(1)求φ;
(2)若函数y=2f(x)+a,(a为常数a∈R)在x∈[
11π
24
4
]
上的最大值和最小值之和为1,求a的值.

查看答案和解析>>

设函数f(x)=
x-3,x≥10
f(x+5),x<10
,则f(5)=
 

查看答案和解析>>

1.D  2.B   3.C  4.B  5.A  6.D   7.C   8.C    9.B   10.A

11.      12.40    13.       14.     15.; 5    16

18.(1)

(2)由乘法原理解题,甲先抽有5种可能,后乙抽有4种可能,故所有可能的抽法为种,即基本事件的总数为20,而甲抽红,乙抽红只有两种可能,所以

(3)由(2)知总数依然20,而甲抽到白色有3种,乙抽红色有2种,由乘法原理基本事件应为3×2=6,所以

(4)(法一)同(1)乙与甲无论谁先抽,抽到任何一张的概率均等,所以

    (法二)利用互斥事件和,甲红,乙红+甲白,乙红,

所以

 

19.  解:(1)

时,取得最小值

(2)令

,得(舍去)

(0,1)

1

(1,2)

0

极大值

 

内有最大值

时恒成立等价于恒成立。

 

20.证明

(1)取PO中点H,连FH,AH则FH平行且等于CD,又CD平行且等于AB,E为AB中点,FH平行且等于AEAEFH为平行四边形,从而EF∥AH,又EF平面PAD,AH平面PAD,所以EF∥平面PAD

(2) PA⊥平面ABCD,PA⊥CD,又CD⊥ADCD⊥平面PAD,又AH平面PAD,  CD⊥AH,而AH∥EF,CD⊥EF.

(3)由CD⊥平面PAD,CD∥AB,BA⊥平面PAD,  BA⊥AH, BA⊥DA, 即为二面角F―AB―C的平面角,由PA=AB=AD,易知=,即为二面角F―AB―C的度数是

21.解:(1)在等比数列中,前项和为,若成等差数列,则成等差数列。

(2)数列的首项为,公比为。由题意知:

时,有

显然:。此时逆命题为假。

时,有

,此时逆命题为真。

 

22.(1)与之有共同焦点的椭圆可设为代入(2,―3)点,

解得m=10或m=―2(舍),故所求方程为

(2)

1、若

于是

2、若,则

△< 0无解即这样的三角形不存在,综合1,2知

 


同步练习册答案