题目列表(包括答案和解析)
(1)对于定义在
上的函数
,满足
,求证:函数
在
上是减函数;
(2)请你认真研读(1)中命题并联系以下命题:若
是定义在
上的可导函数,满足
,则
是
上的减函数。然后填空建立一个普遍化的命题:
设
是定义在
上的可导函数,
,若
+![]()
,
则 是
上的减函数。
注:命题的普遍化就是从考虑一个对象过渡到考虑包含该对象的一个集合;或者从考虑一个较小的集合过渡到考虑包含该较小集合的更大集合。
(3)证明(2)中建立的普遍化命题。
同学们会面对一个共同的问题,就是有时有太多的事情要做.例如,你可能面临好几门课的作业的最后期限,你如何合理安排以确保每门课的作业都能如期完成?如果根本不可能全部按期完成,你怎么办?
这里给出的霍奇森(Hodgson)算法,可以使得迟交作业的数目减到最小.这一算法已经广泛应用于工业生产安排的实践中.
假设你知道各项作业的到期日,并且知道或能估计出完成每项作业将花费的时间,下面是这个算法的自然语言表述:
第一步 把这些作业按到期日的顺序从左到右排列,从最早到期的到最晚到期的;
第二步 假设从左到右一项一项做这些作业的话,计算出从开始到完成某一项作业时所花的时间.依次做此计算直到完成了所列表中的全部作业而没有一项作业会超期,停止;或你算出某项作业将会超期,继续第三步;
第三步 考虑第一项将会超期的作业以及它左边的所有作业,从中取出花费时间最长的那项作业,并把它从表中去掉;
第四步 回到第二步,并重复第二到四步,直到做完.
![]()
根据上表,按霍奇森算法,写出程序框图和程序.
A、某厂一批产品的次品率为
| ||
| B、气象部门预报明天下雨的概率是90%,说明明天该地区90%的地方要下雨,其余10%的地方不会下雨 | ||
| C、某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈 | ||
| D、掷一枚硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为0.5 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com