C. 查看更多

 

题目列表(包括答案和解析)


C.选修4—4:坐标系与参数方程
(本小题满分10分)
在极坐标系中,圆的方程为,以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数),判断直线和圆的位置关系.

查看答案和解析>>

C选修4-4:坐标系与参数方程(本小题满分10分)
在平面直角坐标系中,求过椭圆为参数)的右焦点且与直线为参数)平行的直线的普通方程。

查看答案和解析>>

C.(选修4—4:坐标系与参数方程)

在极坐标系中,圆的方程为,以极点为坐标原点,极轴为轴的正

半轴建立平面直角坐标系,直线的参数方程为为参数),求直线

得的弦的长度.

 

查看答案和解析>>

C(坐标系与参数方程选做题)已知极坐标的极点在直角坐标系的原点O处,极轴与x轴的正半轴重合,曲线C的参数方程为为参数),直线l的极坐标方程为.点P在曲线C上,则点P到直线l的距离的最小值为                

 

查看答案和解析>>

C.选修4-4:坐标系与参数方程

在直角坐标系中,已知曲线的参数方程是是参数),若以为极点,轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线的极坐标方程.

 

 

 

查看答案和解析>>

 

一、选择题(本大题共10小题,每小题5分,共50分)

1―5 ABCDC    6―10 CDBAB

二、填空题(本大题共7小题,每小题4分,共28分)

11.    12.    13.10    14.    15.1    16.50    17.―1

三、解答题(本大题共5小题,共72分。解答应写出文字说明、证明过程或演算过程)

18.(本小题满分14分)

解:(I)    ………………3分

  ………………5分

   ………………8分

   (II)由(I)可得 …………14分

19.(本小题满分14分)

解:(I)由从而

   (II)

  ………………11分

   ………………14分

20.(本小题满分14分)

解:(1)在D1B1上取点M,使D1M=1,

连接MB,MF。 ………………1分

∵D1F=1,D1M=1,

∵BE//B1C1,BE=1,

∴MF//BE,且MF=BE

∴四边形FMBE是平行四边形。……5分

∴EF//BM,

又EF平面B1D1DB,

BM平面B1D1DB,

∴EF//平面B1D1DB。

   (II)∵△D­1B1C1是正三角形,取B1C1中点G,

连接HE,FE。 …………8分

∵ABCD―A1B1C1D1是直棱柱,

∴C1C⊥平面A1B1C1D1

又D1G平面A1B1C1D1

∴C1C⊥D1G,又D1G⊥B1C1

∴D1G⊥平面B1BCC1,又∵FH//D1G,

∴FH⊥平面B1BCC1

∴∠FEH即为直线EF与平面B1BCC1所成角。…………10分

21.(本小题满分15分)

解:(I)把点……1分

…………3分

   (II)当

单调递减区间是

22.(本小题满分15分)

    解:(I)设翻折后点O坐标为

  …………3分

   ………………4分

   ………………5分

综上,以  …………6分

说明:轨迹方程写为不扣分。

   (II)(i)解法一:设直线

解法二:由题意可知,曲线G的焦点即为……7分

   (ii)设直线

…………13分

故当