(II)过点交轨迹G于M.N两点. (i)当|MN|=3时.求M.N两点的纵坐标之和, 查看更多

 

题目列表(包括答案和解析)

已知圆M:(x+
5
)2+y2=36
,定点N(
5
,0)
,点P为圆M上的动点,点Q在NP上,点G在MP上,且满足
NP
=2
NQ
GQ
NP
=0

(I)求点G的轨迹C的方程;
(II)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设
OS
=
OA
+
OB
,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.

查看答案和解析>>

已知圆M:(x+
5
)2+y2=36
,定点N(
5
,0)
,点P为圆M上的动点,点Q在NP上,点G在MP上,且满足
NP
=2
NQ
GQ
NP
=0

(I)求点G的轨迹C的方程;
(II)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设
OS
=
OA
+
OB
,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.

查看答案和解析>>

已知圆M:(x+1)2+y2=8,定点N(1,0),点P为圆M上的动点,若Q在NP上,点G在MP上,且满足数学公式
(I)求点G的轨迹C的方程;
(II)直线l过点P(0,2)且与曲线C相交于A、B两点,当△AOB面积取得最大值时,求直线l的方程.

查看答案和解析>>

已知圆M:(x+1)2+y2=8,定点N(1,0),点P为圆M上的动点,若Q在NP上,点G在MP上,且满足
(I)求点G的轨迹C的方程;
(II)直线l过点P(0,2)且与曲线C相交于A、B两点,当△AOB面积取得最大值时,求直线l的方程.

查看答案和解析>>

已知圆M:(x+1)2+y2=8,定点N(1,0),点P为圆M上的动点,若Q在NP上,点G在MP上,且满足
(I)求点G的轨迹C的方程;
(II)直线l过点P(0,2)且与曲线C相交于A、B两点,当△AOB面积取得最大值时,求直线l的方程.

查看答案和解析>>

 

一、选择题(本大题共10小题,每小题5分,共50分)

1―5 ABCDC    6―10 CDBAB

二、填空题(本大题共7小题,每小题4分,共28分)

11.    12.    13.10    14.    15.1    16.50    17.―1

三、解答题(本大题共5小题,共72分。解答应写出文字说明、证明过程或演算过程)

18.(本小题满分14分)

解:(I)    ………………3分

  ………………5分

   ………………8分

   (II)由(I)可得 …………14分

19.(本小题满分14分)

解:(I)由从而

   (II)

  ………………11分

   ………………14分

20.(本小题满分14分)

解:(1)在D1B1上取点M,使D1M=1,

连接MB,MF。 ………………1分

∵D1F=1,D1M=1,

∵BE//B1C1,BE=1,

∴MF//BE,且MF=BE

∴四边形FMBE是平行四边形。……5分

∴EF//BM,

又EF平面B1D1DB,

BM平面B1D1DB,

∴EF//平面B1D1DB。

   (II)∵△D­1B1C1是正三角形,取B1C1中点G,

连接HE,FE。 …………8分

∵ABCD―A1B1C1D1是直棱柱,

∴C1C⊥平面A1B1C1D1

又D1G平面A1B1C1D1

∴C1C⊥D1G,又D1G⊥B1C1

∴D1G⊥平面B1BCC1,又∵FH//D1G,

∴FH⊥平面B1BCC1

∴∠FEH即为直线EF与平面B1BCC1所成角。…………10分

21.(本小题满分15分)

解:(I)把点……1分

…………3分

   (II)当

单调递减区间是

22.(本小题满分15分)

    解:(I)设翻折后点O坐标为

  …………3分

   ………………4分

   ………………5分

综上,以  …………6分

说明:轨迹方程写为不扣分。

   (II)(i)解法一:设直线

解法二:由题意可知,曲线G的焦点即为……7分

   (ii)设直线

…………13分

故当