常见组合恒等式: ⑴;⑵; ⑶; ⑷ ⑸. (6). (7). (8) 查看更多

 

题目列表(包括答案和解析)

我们常用构造等式对同一个量算两次的方法来证明组合恒等式,如由等式(1+x)2n=(1+x)n(1+x)n可得,左边xn的系数为
C
n
2n
,而右边(1+x)n(1+x)n=(
C
0
n
+
C
1
n
x+
C
2
n
x2+…+
C
n
n
xn)(
C
0
n
+
C
1
n
x+
C
2
n
x2+…+
C
n
n
xn)
,xn的系数为
C
0
n
C
n
n
+
C
1
n
C
n-1
n
+
C
2
n
C
n-2
n
+…+
C
n
n
C
0
n
=(
C
0
n
)2+(
C
1
n
)2+(
C
2
n
)2+…+(
C
n
n
)2
,由(1+x)2n=(1+x)n(1+x)n恒成立,可得(
C
0
n
)2+(
C
1
n
)2+(
C
2
n
)2+…+(
C
n
n
)2=
C
n
2n

利用上述方法,化简(
C
0
2n
)2-(
C
1
2n
)2+(
C
2
2n
)2-(
C
3
2n
)2+…+(
C
2n
2n
)2
=
(-1)n
C
n
2n
(-1)n
C
n
2n

查看答案和解析>>

我们常用构造等式对同一个量算两次的方法来证明组合恒等式,如由等式可得,左边的系数为

而右边的系数为

恒成立,可得

利用上述方法,化简      

 

查看答案和解析>>

我们常用构造等式对同一个量算两次的方法来证明组合恒等式,如由等式(1+x)2n=(1+x)n(1+x)n可得,左边xn的系数为
Cn2n
,而右边(1+x)n(1+x)n=(
C0n
+
C1n
x+
C2n
x2+…+
Cnn
xn)(
C0n
+
C1n
x+
C2n
x2+…+
Cnn
xn)
,xn的系数为
C0n
Cnn
+
C1n
Cn-1n
+
C2n
Cn-2n
+…+
Cnn
C0n
=(
C0n
)2+(
C1n
)2+(
C2n
)2+…+(
Cnn
)2
,由(1+x)2n=(1+x)n(1+x)n恒成立,可得(
C0n
)2+(
C1n
)2+(
C2n
)2+…+(
Cnn
)2=
Cn2n

利用上述方法,化简(
C02n
)2-(
C12n
)2+(
C22n
)2-(
C32n
)2+…+(
C2n2n
)2
=______.

查看答案和解析>>

(2013•泰安二模)如图,一个由两个圆锥组合而成的空间几何体的正视图和侧视图都是边长为1、一个内角为60°的菱形,俯视图是圆及其圆心,那么这个几何体的体积为(  )

查看答案和解析>>

(2010•合肥模拟)某企业生产一种风险较大的高科技产品M,要用甲和乙两种初级产品组合而成,甲和乙两种初级产品生产相互独立,每种初级产品生产结果均有A、B两个等级. 若随机的选用甲、乙两种初级产品各一个组装成一个产品M,甲和乙两种初级产品均为A级时组合而成产品M为合格品,其余均为次品.该厂在生产甲和乙两种初级产品时的等级概率如表:
(Ⅰ)求该产品M为合格品的概率;
(Ⅱ)由于产品M受国家强制认证,只有合格品被允许进入市场销售,其余产品必须销毁,已知生产一件产品M可获利1500万元,销毁一件产品M损失400万元,预计今年该厂生产甲、乙初级产品各3件,求今年该厂生产产品M获纯利润的数学期望.

查看答案和解析>>


同步练习册答案