设f(x)= g)的值域是[0.+∞).则g(x)的值域是 ( ) A. ? B. C.[0.+∞) D.[1.+∞) 答案?C? 查看更多

 

题目列表(包括答案和解析)

f(x)=
x2  x≥0
x     x<0
,g(x)是二次函数,若f(g(x))的值域是[0,+∞),则g(x)的值域是
 

查看答案和解析>>

设二次函数 y=f(x)=ax2+bx+c的图象以y轴为对称轴,已知a+b=1,而且若点(x,y)在 y=f(x)的图象上,则点(x,y2+1)在函数 g(x)=f[f(x)]的图象上.
(1)求g(x)的解析式;
(2)设F(x)=g(x)-λf(x),问是否存在这样的l(λ∈R),使f(x)在(-∞,-
2
2
)
内是减函数,在(-
2
2
,0)内是增函数.

查看答案和解析>>

f(x)=
x2  |x|≥1
x     |x|<1
,g(x)是二次函数,若f(g(x))的值域是[0,+∞),则g(x)的值域是(  )

查看答案和解析>>

设f(x)是一次函数,f(0)、f(3)、f(24)成等比数列,且f(0)>0,函数f(x)的图象与二次函数y=x2+6的图象有且只有一个公共点.
(Ⅰ)求f(x)的解析式:
(Ⅱ)设g(x)=mx2+4mx-f(x),若g(x)在区间[1,4]上是减函数,求实数m的取值范围.

查看答案和解析>>

设二次函数f(x)=ax2+bx+c(a>b>c),已知f(1)=0,且存在实数m,使f(m)=-a.
(1)试推断f(x)在区间[0,+∞)上是否为单调函数,并说明你的理由;
(2)设g(x)=f(x)+bx,对于x1,x2∈R,且x1≠x2,若g(x1)=g(x2)=0,求|x1-x2|的取值范围;
(3)求证:f(m+3)>0.

查看答案和解析>>


同步练习册答案