上一章已经复习过解析几何的基本问题之一:如何求曲线方程.它一般分为两类基本题型:一是已知轨迹类型求其方程.常用待定系数法.如求直线及圆的方程就是典型例题,二是未知轨迹类型.此时除了用代入法.交轨法.参数法等求轨迹的方法外.通常设法利用已知轨迹的定义解题.化归为求已知轨迹类型的轨迹方程.因此在求动点轨迹方程的过程中.一是寻找与动点坐标有关的方程.侧重于数的运算.一是寻找与动点有关的几何条件.侧重于形.重视图形几何性质的运用. 在基本轨迹中.除了直线.圆外.还有三种圆锥曲线:椭圆.双曲线.抛物线. 查看更多

 

题目列表(包括答案和解析)

如图,已知⊙的直径为圆周上一

点,,过点作⊙的切线,过点

的垂线,垂足为,则_____.

 

 

查看答案和解析>>

(2013•闸北区一模)假设你已经学习过指数函数的基本性质和反函数的概念,但还没有学习过对数的相关概念.由指数函数f(x)=ax(a>0且a≠1)在实数集R上是单调函数,可知指数函数f(x)=ax(a>0且a≠1)存在反函数y=f-1(x),x∈(0,+∞).请你依据上述假设和已知,在不涉及对数的定义和表达形式的前提下,证明下列命题:
(1)对于任意的正实数x1,x2,都有f-1(x1x2)=f-1(x1)+f-1(x2)
(2)函数y=f-1(x)是单调函数.

查看答案和解析>>

如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,|AB|=3米,|AD|=2米,

(I)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?

(II)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.

(Ⅲ)若AN的长度不少于6米,则当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.

【解析】本题主要考查函数的应用,导数及均值不等式的应用等,考查学生分析问题和解决问题的能力   第一问要利用相似比得到结论。

(I)由SAMPN > 32 得 > 32 ,

∵x >2,∴,即(3x-8)(x-8)> 0

∴2<X<8/3,即AN长的取值范围是(2,8/3)或(8,+)

第二问,  

当且仅当

(3)令

∴当x > 4,y′> 0,即函数y=在(4,+∞)上单调递增,∴函数y=在[6,+∞]上也单调递增.                

∴当x=6时y=取得最小值,即SAMPN取得最小值27(平方米).

 

查看答案和解析>>

⊙O1和⊙O2的极坐标方程分别为

⑴把⊙O1和⊙O2的极坐标方程化为直角坐标方程;

⑵求经过⊙O1,⊙O2交点的直线的直角坐标方程.

【解析】本试题主要是考查了极坐标的返程和直角坐标方程的转化和简单的圆冤啊位置关系的运用

(1)中,借助于公式,将极坐标方程化为普通方程即可。

(2)中,根据上一问中的圆的方程,然后作差得到交线所在的直线的普通方程。

解:以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.

(I),由.所以

为⊙O1的直角坐标方程.

同理为⊙O2的直角坐标方程.

(II)解法一:由解得

即⊙O1,⊙O2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x.

解法二: 由,两式相减得-4x-4y=0,即过交点的直线的直角坐标方程为y=-x

 

查看答案和解析>>

已知离心率为
1
2
的椭圆
x2
a2
+
y2
b2
=1(a>b>0)
,左、右焦点分别为F1(-c,0)、F2(c,0),M、N分别是直线x=
a2
c
上的两上动点,且
F1M
F2N
=0,|
MN
|
的最小值为2
15

(Ⅰ)求椭圆方程;
(Ⅱ)过定点P(m,0)的直线交椭圆于B、E两点,A为B关于x轴的对称点(A、P、B不共线),问:直线AE是否会经过x轴上一定点,并求AE过椭圆焦点时m的值.

查看答案和解析>>


同步练习册答案