2.已知圆的方程为.求过圆上一点的切线方程. [学生活动]探究方法 [教师预设] 方法一:待定系数法(利用几何关系求斜率-垂直) 方法二:待定系数法(利用代数关系求斜率-联立方程) 方法三:轨迹法 [多媒体课件演示] 方法四:轨迹法 查看更多

 

题目列表(包括答案和解析)

已知圆的方程为x2+y2=4,过点M(2,4)作圆的两条切线,切点分别为A1、A2,直线A1A2恰好经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右顶点和上顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设AB是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)垂直于x轴的一条弦,AB所在直线的方程为x=m(|m|<a且m≠0),P是椭圆上异于A、B的任意一点,直线AP、BP分别交定直线l:x=
a2
m
于两点Q、R,求证
OQ
OR
>4

查看答案和解析>>

已知圆的方程为x2+y2=4,过点M(2,4)作圆的两条切线,切点分别为A1、A2,直线A1A2恰好经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右顶点和上顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线x=-1与椭圆相交于A、B两点,P是椭圆上异于A、B的任意一点,直线AP、BP分别交定直线l:x=-4于两点Q、R,求证
OQ
OR
为定值.

查看答案和解析>>

已知圆的方程为且与圆相切.

(1)求直线的方程;

(2)设圆轴交于两点,M是圆上异于的任意一点,过点且与轴垂直的直线为,直线交直线于点P’,直线交直线于点Q’

求证:以P’Q’为直径的圆总过定点,并求出定点坐标.

 

查看答案和解析>>

已知圆的方程为且与圆相切.

(1)求直线的方程;

(2)设圆轴交于两点,M是圆上异于的任意一点,过点且与轴垂直的直线为,直线交直线于点P’,直线交直线于点Q’

求证:以P’Q’为直径的圆总过定点,并求出定点坐标.

 

查看答案和解析>>

已知圆的方程为x2+y2=4,过点M(2,4)作圆的两条切线,切点分别为A1、A2,直线A1A2恰好经过椭圆数学公式的右顶点和上顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设AB是椭圆数学公式(a>b>0)垂直于x轴的一条弦,AB所在直线的方程为x=m(|m|<a且m≠0),P是椭圆上异于A、B的任意一点,直线AP、BP分别交定直线数学公式于两点Q、R,求证数学公式

查看答案和解析>>


同步练习册答案