设函数f1(x)=x,f2(x)=x-1,f3(x)=x2,则= . 答案 查看更多

 

题目列表(包括答案和解析)

对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(Ⅰ)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由;
    第一组:f1(x)=sinx,  f2(x)=cosx,  h(x)=sin(x+
π
3
)

    第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;
(Ⅱ)设f1(x)=log2x,  f2(x)=log
1
2
x,  a=2,  b=1
,生成函数h(x).若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求实数t的取值范围;
(Ⅲ)设f1(x)=x,   f2(x)=
1
x
   (1≤x≤10)
,取a=1,b>0,生成函数h(x)使h(x)≥b恒成立,求b的取值范围.

查看答案和解析>>

对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(Ⅰ)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由;
第一组:f1(x)=sinx,  f2(x)=cosx,  h(x)=sin(x+
π
3
)

第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;
(Ⅱ)设f1(x)=log2x,  f2(x)=log
1
2
x,  a=2,  b=1
,生成函数h(x).若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求实数t的取值范围;
(Ⅲ)设f1(x)=x,   f2(x)=
1
x
   (1≤x≤10)
,取a=1,b>0,生成函数h(x)使h(x)≥b恒成立,求b的取值范围.

查看答案和解析>>

对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a·f1(x)+b·f2(x),那么称h(x)为f1(x),f2(x)的生成函数.

(Ⅰ)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由;

第一组:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+);

第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;

(Ⅱ)设f1(x)=log2x,f2(x)=logx,a=2,b=1,生成函数h(x).若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求实数t的取值范围;

(Ⅲ)设f1(x)=x,f2(x)=(1≤x≤10),取a=1,b>0,生成函数h(x)使h(x)≥b恒成立,求b的取值范围.

查看答案和解析>>

对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a·f1(x)+b·f2(x),那么称h(x)为f1(x),f2(x)的生成函数.

(Ⅰ)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由;

第一组:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+);

第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;

(Ⅱ)设f1(x)=log2x,f2(x)=logx,a=2,b=1,生成函数h(x).若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求实数t的取值范围;

(Ⅲ)设f1(x)=x,f2(x)=(1≤x≤10),取a=1,b>0,生成函数h(x)使h(x)≥b恒成立,求b的取值范围.

查看答案和解析>>

h(x)=x+
m
x
x∈[
1
4
,5]
,其中m是不等于零的常数,
(1)(理)写出h(4x)的定义域;
(文)m=1时,直接写出h(x)的值域;
(2)(文、理)求h(x)的单调递增区间;
(3)已知函数f(x)(x∈[a,b]),定义:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函数f(x)在D上的最小值,maxf(x)|x∈D表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)当m=1时,设M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范围;
(文)当m=1时,|h1(x)-h2(x)|≤n恒成立,求n的取值范围.

查看答案和解析>>


同步练习册答案