题目列表(包括答案和解析)
(本小题满分12分)如图,已知
分别为椭圆
的下顶点和上顶点,
为椭圆的下焦点,
为椭圆上异于
点的任意一点,直线
分别交直线
于
点
(1)当点
位于
轴右侧,且
∥
时,求直线
的方程;
(2)是否存在
值,使得以
为直径的圆过
点?若存在加以证明,若不存在,请说明理由;
(3)由(2)问所得
值,求线段
最小值.
(本小题满分12分)如图,已知
分别为椭圆
的下顶点和上顶点,
为椭圆的下焦点,
为椭圆上异于
点的任意一点,直线
分别交直线
于
点
(1)当点
位于
轴右侧,且
∥
时,求直线
的方程;
(2)是否存在
值,使得以
为直径的圆过
点?若存在加以证明,若不存在,请说明理由;
(3)由(2)问所得
值,求线段
最小值.
(本小题满分12分) 设椭圆C1:
的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:
与y轴的交点为B,且经过F1,F2点.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设M(0,
),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求
面积的最大值.
(本小
题满分12分)
如图,过抛物线
的对称轴上任一点![]()
![]()
作直线与抛物线交于
两点,点
是点
关于原点的对称点.
(1)设点
分有向线段
所成的比为λ,证明
;
(2)设直线
的方程是
,过
两点的圆
与
抛物线在点
处有共同的切线,求圆
的方程.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com