题目列表(包括答案和解析)
请你耐心阅读下面的材料,然后解决问题.
(1)比较两数的大小:已知A=a+2,B=a-1,比较A、B大小.
解:利用作差法:A-B=(a+2)-(a-1)=a+2-a+1=3.由于3>0,即A-B>0,所以A>B.
(2)对于一个只含有一个字母的二次三项式,我们将其进行适当变形,从而知道代数式的值的正负情况.如:a2-2a+3=a2-2a+1+2=(a-1)2+2,而(a-1)2≥0,所以(a-1)2+2≥2;又如:-y2-4y-12=-(y2+4y+12)=-(y2+4y+4+8)=-[(y+2)2+8]=-(y+2)2-8.
因为(y+2)2≥0,所以-(y+2)2≤0,因此-(y+2)2-8≤-8.
请你利用上述方法解决下面的问题:
在狗年刚到来时,小花狗又逮到了老鼠,想再次愚弄它一番.老鼠不服:“我归猫管,你凭什么三番五次找我麻烦?你的智商也不比我好,不信咱俩比算数!”狗哪里把老鼠放在眼里:“小样,我还怕你忽悠不成!”于是老鼠把随身带的一张标有式子“-m2”的卡片给了狗,自己的卡片上标有式子“6m+10”.老鼠约定规则:它们依次随机说一个数m(不得重复说某一个数),然后比较它们俩卡片上式子的值,谁卡片上式子的值大谁赢得1分,先得10分者胜.你认为这个游戏对谁有利?为什么?
| 1 |
| 2 |
| 1 |
| 2 |
(11·永州)(本题满分10分)探究问题:
⑴方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45° ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2, ∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
⑵方法迁移:
如图②,将
沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=
∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
⑶问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足
,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).
(11·永州)(本题满分10分)探究问题:
⑴方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB
与AD重合,由旋转可得:
AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF="45° " ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2, ∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.![]()
⑵方法迁移:
如图②,将
沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=
∠DAB.试猜想DE,BF,EF之间有何数量
关系,并证明你的猜想.![]()
⑶问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足
,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com