解:(1)解方程x2-10x+16=0得x1=2.x2=8 ∵点B在x轴的正半轴上.点C在y轴的正半轴上.且OB<OC ∴点B的坐标为(2.0).点C的坐标为(0.8) 又∵抛物线y=ax2+bx+c的对称轴是直线x=-2 ∴由抛物线的对称性可得点A的坐标为 ∴A.B.C三点的坐标分别是A (2)∵点C(0.8)在抛物线y=ax2+bx+c的图象上 ∴c=8.将A.B(2.0)代入表达式y=ax2+bx+8.得 解得 ∴所求抛物线的表达式为y=-x2-x+8 (3)∵AB=8.OC=8 ∴S△ABC =×8×8=32 (4)依题意.AE=m.则BE=8-m. ∵OA=6.OC=8. ∴AC=10 ∵EF∥AC ∴△BEF∽△BAC ∴= 即= ∴EF= 过点F作FG⊥AB.垂足为G.则sin∠FEG=sin∠CAB= ∴= ∴FG=·=8-m ∴S=S△BCE-S△BFE=(8-m)×8-(8-m)(8-m) =(8-m)(8-8+m)=(8-m)m=-m2+4m 自变量m的取值范围是0<m<8 (5)存在. 理由: ∵S=-m2+4m=-(m-4)2+8 且-<0. ∴当m=4时.S有最大值.S最大值=8 ∵m=4.∴点E的坐标为 ∴△BCE为等腰三角形. 查看更多

 

题目列表(包括答案和解析)

阅读下面例题的解答过程,体会并其方法,并借鉴例题的解法解方程。
例:解方程x2-1=0.
解:(1)当x-1≥0即x≥1时,= x-1。
原化为方程x2-(x-1)-1=0,即x2-x=0
解得x1 =0.x2=1
∵x≥1,故x =0舍去,
∴x=1是原方程的解。
(2)当x-1<0即x<1时,=-(x-1)。
原化为方程x2+(x-1)-1=0,即x2+x-2=0
解得x1 =1.x2=-2
∵x<1,故x =1舍去,
∴x=-2是原方程的解。
综上所述,原方程的解为x1 =1.x2=-2
解方程x2-4=0.

查看答案和解析>>

阅读下面例题的解答过程,体会并其方法,并借鉴例题的解法解方程。

例:解方程x2-1=0.

解:(1)当x-1≥0即x≥1时,= x-1。

原化为方程x2-(x-1)-1=0,即x2-x=0

解得x1 =0.x2=1

∵x≥1,故x =0舍去,

∴x=1是原方程的解。

(2)当x-1<0即x<1时,=-(x-1)。

原化为方程x2+(x-1)-1=0,即x2+x-2=0

解得x1 =1.x2=-2

∵x<1,故x =1舍去,

∴x=-2是原方程的解。

综上所述,原方程的解为x1 =1.x2=-2

解方程x2-4=0.

 

查看答案和解析>>

用心解一解:
(1)3(x-7)=15-5(x-4);
(2)
y-1
2
=2-
y+2
5

(3)老师在黑板上出了一道解方程的题
2x-1
3
=1-
x+2
4
,小明马上举起了手,要求到黑板上去做,它是这样做的:
4(2x-1)=1-3(x+2)①
8x-4=1-3x-6        ②
8x+3x=1-6+4        ③
11x=-1             ④
x=-
1
11
             ⑤
老师说:小明解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,请你指出他错在第
步(填编号);
然后,请你解方程:
2x-1
3
=1-
x+2
4
.相信你,一定做得对.

查看答案和解析>>

按要求解下列方程:
(1)用配方法解方程2x2+3x-1=0;
(2)用公式法解方程(x+1)(3x-1)=0;
(3)用因式分解法解方程(2x+1)2=(x-3)2

查看答案和解析>>

利用图象解一元二次方程x2+x-3=0时,我们采用的一种方法是:在平面直角坐标系中画出抛物线y=x2+x-3图象,图象与x轴交点的横坐标就是该方程的解.也可以这样求解:在平面直角坐标系中画出y=x2和直线u=-x+3,两图象交点的横坐标就是该方程的解.根据以上提示完成以下问题:

(1)在图(1)中画出函数y=x2-2x-3的图象,利用图象求方程x2-2x-3=0的解.
(2)已知函数y=-
6x
的图象(如图2所示),利用该图象求方程-x2-x+6=0的解.

查看答案和解析>>


同步练习册答案