解: (1)①CF与BD位置关系是 垂 直.数量关系是相 等, ②当点D在BC的延长线上时①的结论仍成立. 由正方形ADEF得 AD=AF .∠DAF=90º. ∵∠BAC=90º.∴∠DAF=∠BAC . ∴∠DAB=∠FAC. 又AB=AC .∴△DAB≌△FAC . ∴CF=BD ∠ACF=∠ABD. ∵∠BAC=90º. AB=AC .∴∠ABC=45º.∴∠ACF=45º. ∴∠BCF=∠ACB+∠ACF= 90º.即 CF⊥BD (2)画图正确 当∠BCA=45º时.CF⊥BD. 理由是:过点A作AG⊥AC交BC于点G.∴AC=AG 可证:△GAD≌△CAF ∴∠ACF=∠AGD=45º ∠BCF=∠ACB+∠ACF= 90º. 即CF⊥BD (3)当具备∠BCA=45º时. 过点A作AQ⊥BC交BC的延长线于点Q. ∵DE与CF交于点P时. ∴此时点D位于线段CQ上. ∵∠BCA=45º.可求出AQ= CQ=4.设CD=x .∴ DQ=4-x. 容易说明△AQD∽△DCP.∴ . ∴. . ∵0<x≤3 ∴当x=2时.CP有最大值1. 查看更多

 

题目列表(包括答案和解析)

27、如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为
垂直
,数量关系为
相等

②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.

查看答案和解析>>

如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.如果AB=AC,∠BAC=90°.
解答下列问题:
(1)当点D在线段BC上时(与点B不重合),如图甲,线段CF、BD之间的位置关系为
垂直
垂直
,数量关系为
相等
相等

(2)当点D在线段BC的延长线上时,如图乙,①中的结论是否仍然成立,为什么?(要求写出证明过程)

查看答案和解析>>


同步练习册答案