题目列表(包括答案和解析)
(本小题满分12分) 已知两点
和
分别在直线
和![]()
上运动,且
,动点
满足:
(
为坐标原点),点
的轨迹记为曲线
. (Ⅰ)求曲线
的方程,并讨论曲线
的类型; (Ⅱ)过点
作直线
与曲线
交于不同的两点
、
,若对于任意
,都有
为锐角,求直线
的斜率
的取值范围.
(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线 C
(Ⅰ)求C的方程;
(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.
(本小题满分12分)曲线C:
,过点
的切线方程为
,且交于曲线
两点,求切线
与C围成的图形的面积。
(本小题满分12分)
设A1、A2是双曲线
的实轴两个端点,P1P2是双曲线的垂直于
轴的弦,
(Ⅰ)直线A1P1与A2P2交点P的轨迹
的方程;
(Ⅱ)过
与
轴的交点Q作直线与(1)中轨迹
交于M、N两点,连接FN、FM,其中F
,求证:
为定值;
(本小题满分12分)已知点P和点
是曲线
上的两点,且点
的横坐标是1,点![]()
的横坐标是4,求:(1)割线的![]()
斜率;(2)点
处的切线方程.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com