(本小题满分12分)
设A1、A2是双曲线
的实轴两个端点,P1P2是双曲线的垂直于
轴的弦,
(Ⅰ)直线A1P1与A2P2交点P的轨迹
的方程;
(Ⅱ)过
与
轴的交点Q作直线与(1)中轨迹
交于M、N两点,连接FN、FM,其中F
,求证:
为定值;
(Ⅰ)
(
;(Ⅱ)见解析。
【解析】(Ⅰ)利用交轨法来求直线P1A1和P2A2的交点的轨迹方程,先根据已知条件求出A1、A2点的坐标,设P(x0,y0),则N(x0,-y0),求出直线PA1和NA2的方程,联立方程,方程组的解为直线PA1和NA2交点的坐标,再把P点坐标(x0,y0)用x,y表示,代入双曲线方程,化简即得轨迹C的方程.
(Ⅱ)设
的方程为
,
,直线MN的方程与曲线C的方程联立消y可得关于x的一元二次方程,解出M,N点横坐标之和与之积代入下式
即可证明
为定值.
(Ⅰ)设
,则
的方程为
①
的方程为
② 将①×②,得![]()
又
在双曲线上,
,即
,
代入上式 ,得
(
………5分
(Ⅱ)法一:设
的方程为
,![]()
联立,得
消
,得![]()
则![]()
..12分
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com