3.设平面过的重心.且两点在的同侧.点在的另一侧.记三 点到平面的距离分别为.对任意满足上述条件的平面.写出之间的关系 的一个等式 . 查看更多

 

题目列表(包括答案和解析)

设G是 的重心,且,则角B的大小为                       

查看答案和解析>>

已知椭圆的中心在坐标原点,焦点在X轴上,F1,F2分别是椭圆的左、右焦点,M是椭圆短轴的一个端点,△MF1F2的面积为4,过F1的直线与椭圆交于A,B两点,△ABF2的周长为.

(Ⅰ)求此椭圆的方程;

(Ⅱ)若N是左标平面内一动点,G是△MF1F2的重心,且,求动点N的轨迹方程;

(Ⅲ)点p审此椭圆上一点,但非短轴端点,并且过P可作(Ⅱ)中所求得轨迹的两条不同的切线,、R是两个切点,求的最小值.

查看答案和解析>>

已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A(0,
2
)
为圆心,1为半径的圆相切,又知C的一个焦点与A关于直线y=x对称.
(1)求双曲线C的方程;
(2)设直线y=mx+1与双曲线C的左支交于A,B两点,另一直线l经过M(-2,0)及AB的中点,求直线l在y轴上的截距b的取值范围.

查看答案和解析>>

已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A(0,
2
)为圆心、1为半径的圆相切,又知双曲线C的一个焦点与点A关于直线y=x对称.
(1)求双曲线C的方程.
(2)设直线l:y=mx+1与双曲线C的左支交于A,B两点,求实数m的取值范围.

查看答案和解析>>

设G、M分别为不等边△ABC的重心与外心,A(-1,0)、B(1,0),GM∥AB.
(1)求点C的轨迹方程;
(2)设点C的轨迹为曲线E,是否存在直线l,使l过点(0.1)并与曲线E交于P、Q两点,且满足
OP
OQ
=-2
?若存在,求出直线l的方程,若不存在,说明理由.
注:三角形的重心的概念和性质如下:设△ABC的重心,且有
GD
GC
=
GE
GA
=
GF
GB
=
1
2

查看答案和解析>>


同步练习册答案