对数:⑴, ⑵对数恒等式, ⑶, ,⑷对数换底公式, 推论:. (以上且均不等于) 查看更多

 

题目列表(包括答案和解析)

 本题有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分

(1)选修4-2;矩阵与变换

二阶矩阵对应的变换将向量分别变换成向量,直线的变换下所得到的直线的方程是,求直线的方程。

 

(2)选修4-4;坐标系与参数方程¥¥

过点且倾斜角为的直线和曲线为参数)相交于两点,求线段的长。

 

(3)选修4-5;不等式选讲

若不等式,对满足的一切实数恒成立,求实数的取值范围。

 

 

 

 

 

 

 

 

 

查看答案和解析>>

 本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题做答,满分14分。如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。

(1)选修4-2:矩阵与变换

已知矩阵M=,且

(Ⅰ)求实数的值;(Ⅱ)求直线在矩阵M所对应的线性变换下的像的方程。

(2)选修4-4:坐标系与参数方程

在直角坐标系xoy中,直线的参数方程为(t为参数)。在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为

(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为

求|PA|+|PB|。

(3)选修4-5:不等式选讲

已知函数

(Ⅰ)若不等式的解集为,求实数的值;

(Ⅱ)在(Ⅰ)的条件下,若对一切实数x恒成立,求实数m的取值范围。

 

 

 

查看答案和解析>>

本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
变换T1是逆时针旋转90°的旋转变换,对应的变换矩阵为M1,变换T2对应的变换矩阵是
(I)求点P(2,1)在T1作用下的点Q的坐标;
(II)求函数y=x2的图象依次在T1,T2变换的作用下所得的曲线方程.
(2)选修4-4:极坐标系与参数方程
从极点O作一直线与直线l:ρcosθ=4相交于M,在OM上取一点P,使得OM•OP=12.
(Ⅰ)求动点P的极坐标方程;
(Ⅱ)设R为l上的任意一点,试求RP的最小值.
(3)选修4-5:不等式选讲
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集为,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x-1)>b对一切实数x恒成立,求实数b的取值范围.

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,请考生任选2题作答.
(1)选修4-2:矩阵与变换
已知a,b∈R,若所对应的变换TM把直线L:2x-y=3变换为自身,求实数a,b,并求M的逆矩阵.
(2)选修4-4:坐标系与参数方程
已知直线l的参数方程:(t为参数)和圆C的极坐标方程:
①将直线l的参数方程化为普通方程,圆C的极坐标方程化为直角坐标方程;
②判断直线l和圆C的位置关系.
(3)选修4-5:不等式选讲
已知函数f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求实数x的范围.

查看答案和解析>>

本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
变换T1是逆时针旋转90°的旋转变换,对应的变换矩阵为M1,变换T2对应的变换矩阵是M2=
11
01

(I)求点P(2,1)在T1作用下的点Q的坐标;
(II)求函数y=x2的图象依次在T1,T2变换的作用下所得的曲线方程.
(2)选修4-4:极坐标系与参数方程
从极点O作一直线与直线l:ρcosθ=4相交于M,在OM上取一点P,使得OM•OP=12.
(Ⅰ)求动点P的极坐标方程;
(Ⅱ)设R为l上的任意一点,试求RP的最小值.
(3)选修4-5:不等式选讲
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集为{x|x≥
1
2
或x≤-
5
6
}
,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x-1)>b对一切实数x恒成立,求实数b的取值范围.

查看答案和解析>>


同步练习册答案