26. (1)如图1.图2.图3.在中.分别以为边.向外作正三角形.正四边形.正五边形.相交于点. ①如图1.求证:, ②探究:如图1. , 如图2. , 如图3. . (2)如图4.已知:是以为边向外所作正边形的一组邻边,是以为边向外所作正边形的一组邻边.的延长相交于点. ①猜想:如图4. (用含的式子表示), ②根据图4证明你的猜想. (1)①证法一:与均为等边三角形. .························································································ 2分 且··············································· 3分 . 即························································ 4分 .··················································· 5分 证法二:与均为等边三角形. .························································································ 2分 且························································································ 3分 可由绕着点按顺时针方向旋转得到··································· 4分 .··························································································· 5分 ②...········································································ 8分 (2)①········································································································ 10分 ②证法一:依题意.知和都是正边形的内角... .即.····························· 11分 .·························································································· 12分 ..······ 13分 . ········································ 14分 证法二:同上可证 .··························································· 12分 .如图.延长交于. . ································ 13分 ················· 14分 证法三:同上可证 .··························································· 12分 . . ························································ 13分 即········································································ 14分 证法四:同上可证 .··························································· 12分 .如图.连接. .···································· 13分 即······························· 14分 注意:此题还有其它证法.可相应评分. 查看更多

 

题目列表(包括答案和解析)

从2010年3月23日福建南平发生校园惨案以来,全国某些地方相继发生类似的校园惨案,为了“打造平安校园,优化育人环境”,重庆市交巡警总队决定在小龙坎正街上设立一个交巡警平台P点,要求巡警从该平台到南开中学和第八中学这两所中学的总距离之和最短.请你用尺规作图的方式找出交巡警平台P点的位置.(不写出已知、求作、作法,不用说明理由,但要保留作图痕迹)

查看答案和解析>>

如图,正比例函数与反比例函数相交于A、B点,已知点A的坐标为(4,n),BD⊥x轴于点D,且S△BDO=4。过点A的一次函数与反比例函数的图像交于另一点C,与x轴交于点E(5,0)。

(1)求正比例函数、反比例函数和一次函数的解析式;

(2)结合图像,求出当时x的取值范围。

         第26题

查看答案和解析>>

已知抛物线My = -x2+2mx+nmn为常数,且m> 0,n>0)的顶点为A,与y轴交于点C;抛物线N与抛物线M关于y轴对称,其顶点为B,连结ACBCAB

问抛物线M上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由.

说明:⑴如果你反复探索,没有解决问题, 请写出探索过程(要求至少写3步);

⑵在你完成⑴之后,可以从①、②中选取一个条件,完成解答(选取①得7分;选取②得10分).

;②

附加题: 若将26题中“抛物线My= -x2+2mx+nmn为常数,且m> 0,n>0) ”改为“抛物线My= ax2+2mx+nmn为常数,且m≠ 0,a≠0, n>0) ”,其他条件不变, 探究 26题中问题.

查看答案和解析>>

已知抛物线My = -x2+2mx+nmn为常数,且m> 0,n>0)的顶点为A,与y轴交于点C;抛物线N与抛物线M关于y轴对称,其顶点为B,连结ACBCAB

问抛物线M上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由.

说明:⑴如果你反复探索,没有解决问题, 请写出探索过程(要求至少写3步);

⑵在你完成⑴之后,可以从①、②中选取一个条件,完成解答(选取①得7分;选取②得10分).

;②

附加题: 若将26题中“抛物线My= -x2+2mx+nmn为常数,且m> 0,n>0) ”改为“抛物线My= ax2+2mx+nmn为常数,且m≠ 0,a≠0, n>0) ”,其他条件不变, 探究 26题中问题.

查看答案和解析>>

  (福建南平2003年中考试题)请写一个三项式,使它能先提公因式,再运用公式来分解.你编写的三项式是________,分解因式的结果是________.

 

查看答案和解析>>


同步练习册答案