证法二:当n≥2时.因为xn≥>0.xn+1=. 查看更多

 

题目列表(包括答案和解析)

(2013•茂名一模)已知数列{an},{bn}中,a1=b1=1,且当n≥2时,an-nan-1=0,bn=2bn-1-2n-1.记n的阶乘n(n-1)(n-2)…3•2•1≈n!
(1)求数列{an}的通项公式;
(2)求证:数列{
bn
2n
}
为等差数列;
(3)若cn=
an
an+2
+bn-2n
,求{cn}的前n项和.

查看答案和解析>>

已知数列{an},{bn}中,a1=b1=1,且当n≥2时,an-nan-1=0,数学公式.记n的阶乘n(n-1)(n-2)…3•2•1≈n!
(1)求数列{an}的通项公式;
(2)求证:数列数学公式为等差数列;
(3)若数学公式,求{cn}的前n项和.

查看答案和解析>>

已知数列{an},{bn}中,a1=b1=1,且当n≥2时,an-nan-1=0,.记n的阶乘n(n-1)(n-2)…3•2•1≈n!
(1)求数列{an}的通项公式;
(2)求证:数列为等差数列;
(3)若,求{cn}的前n项和.

查看答案和解析>>

已知数列{an},{bn}中,a1=b1=1,且当n≥2时,an-nan-1=0,bn=2bn-1-2n-1.记n的阶乘n(n-1)(n-2)…3•2•1≈n!
(1)求数列{an}的通项公式;
(2)求证:数列{
bn
2n
}
为等差数列;
(3)若cn=
an
an+2
+bn-2n
,求{cn}的前n项和.

查看答案和解析>>

(2013•朝阳区二模)数列{2n-1}的前n项1,3,7,…,2n-1组成集合An={1,3,7,…,2n-1}(n∈N*),从集合An中任取k(k=1,2,3,…,n)个数,其所有可能的k个数的乘积的和为Tk(若只取一个数,规定乘积为此数本身),记Sn=T1+T2+…+Tn.例如当n=1时,A1={1},T1=1,S1=1;当n=2时,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7.则当n=3时,S3=
63
63
;试写出Sn=
2
n(n+1)
2
-1
2
n(n+1)
2
-1

查看答案和解析>>


同步练习册答案