精英家教网 > 高中数学 > 题目详情
(2013•朝阳区二模)数列{2n-1}的前n项1,3,7,…,2n-1组成集合An={1,3,7,…,2n-1}(n∈N*),从集合An中任取k(k=1,2,3,…,n)个数,其所有可能的k个数的乘积的和为Tk(若只取一个数,规定乘积为此数本身),记Sn=T1+T2+…+Tn.例如当n=1时,A1={1},T1=1,S1=1;当n=2时,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7.则当n=3时,S3=
63
63
;试写出Sn=
2
n(n+1)
2
-1
2
n(n+1)
2
-1
分析:根据Sn=T1+T2+…+Tn的意义即可求得n=3时S3.根据S1,S2,S3,猜想Sn=2
n(n+1)
2
-1,然后利用数学归纳法证明即可.
解答:解:当n=3时,A3={1,3,7},
T1=1+3+7=11,T2=1×3+1×7+3×7=31,T3=1×3×7=21,
所以S3=11+31+21=63;
由S1=1=21-1=2
1×2
2
-1,S2=7=23-1=2
2×3
2
-1,S3=63=26-1=2
3×4
2
-1,猜想Sn=2
n(n+1)
2
-1,下面证明:
(1)易知n=1时成立;
(2)假设n=k时Sk=2
k(k+1)
2
-1,
则n=k+1时,Sk+1=T1+T2+T3+…+Tk+1
=[T1′+(2k+1-1)]+[T2′+(2k+1-1)T1′]+[T3′+(2k+1-1)T2′]+…+[Tk′+(2k+1-1)Tk](其中Ti′,i=1,2,…,k,为n=k时可能的k个数的乘积的和为Tk),
=(T1′+T2′+T3+…Tk)+(2k+1-1)+(2k+1-1)(T1′+T2′+T3+…Tk
=Sk+(2k+1-1)+(2k+1-1)Sk
=2k+12
k(k+1)
2
-1)+(2k+1-1)
=2k+12
k(k+1)
2
-1=2
(k+1)(k+2)
2
-1,即n=k时Sk+1=2
(k+1)(k+2)
2
-1也成立,
综合(1)(2)知对n∈N*Sn=2
n(n+1)
2
-1成立.
所以Sn=2
n(n+1)
2
-1.
故答案为:63;Sn=2
n(n+1)
2
-1.
点评:本题考查等差、等比数列的综合,考查合情推理,考查学生分析解决问题的能力,具有一定综合性,难度较大,能力要求较高.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•朝阳区二模)为了解某市今年初二年级男生的身体素质状况,从该市初二年级男生中抽取了一部分学生进行“掷实心球”的项目测试.成绩低于6米为不合格,成绩在6至8米(含6米不含8米)的为及格,成绩在8米至12米(含8米和12米,假定该市初二学生掷实心球均不超过12米)为优秀.把获得的所有数据,分成[2,4),[4,6),[6,8),[8,10),[10,12]五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在10米到12米之间.
(Ⅰ)求实数a的值及参加“掷实心球”项目测试的人数;
(Ⅱ)根据此次测试成绩的结果,试估计从该市初二年级男生中任意选取一人,“掷实心球”成绩为优秀的概率;
(Ⅲ)若从此次测试成绩不合格的男生中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区二模)已知等差数列{an}的公差为-2,a3是a1与a4的等比中项,则首项a1=
8
8
,前n项和Sn=
-n2+9n
-n2+9n

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区二模)已知函数f(x)=a•2|x|+1(a≠0),定义函数F(x)=
f(x),x>0
-f(x),x<0
给出下列命题:
①F(x)=|f(x)|; 
②函数F(x)是奇函数;
③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,
其中所有正确命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区二模)点P是棱长为1的正方体ABCD-A1B1C1D1的底面A1B1C1D1上一点,则
PA
PC1
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区二模)在△ABC中,角A,B,C所对的边分别为a,b,c,且f(A)=2cos
A
2
sin(π-
A
2
)
+sin2
A
2
-cos2
A
2

(Ⅰ)求函数f(A)的最大值;
(Ⅱ)若f(A)=0,C=
12
,a=
6
,求b的值.

查看答案和解析>>

同步练习册答案