5.正三棱锥A-BCD中.侧棱AB.AC.AD两两垂直.且AB=AC=AD=a.则以A为球心.正三棱锥的高为半径的球夹在正三棱锥内的球面部分的面积是 A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

正三棱锥A-BCD中,侧棱AB、AC、AD两两垂直,且AB=AC=AD=a,则以A为球心、正三棱锥的高为半径的球夹在正三棱锥内的球面部分的面积是

A.            B.            C.             D.

查看答案和解析>>

14、在平面几何中,有射影定理:“在△ABC中,AB⊥AC,点A在BC边上的射影为D,有AB2=BD•BC.”类比平面几何定理,研究三棱锥的侧面面积与射影面积、底面面积的关系,可以得出的正确结论是:“在三棱锥A-BCD中,AD⊥平面ABC,点A在底面BCD上的射影为O,则有
S△ABC2=S△BCO•S△BCD

查看答案和解析>>

在平面几何中,有射影定理:“在△ABC中,AB⊥AC,点A在BC边上的射影为D,有AB2=BD•BC.”类比平面几何定理,研究三棱锥的侧面面积与射影面积、底面面积的关系,可以得出的正确结论是:“在三棱锥A-BCD中,AD⊥平面ABC,点A在底面BCD上的射影为O,则有   

查看答案和解析>>


同步练习册答案