期望的一个性质:若(a.b是常数).ξ是随机变量.则η也是随机变量.它们的分布列为 ξ x1 x2 - xn - η - - P p1 p2 - pn - 于是-- =--)--) =. 由此.我们得到了期望的一个性质: 查看更多

 

题目列表(包括答案和解析)

已知命题:“若数列{an}是等比数列,且an>0,则数列bn=
ka1a2an
(n∈N*)
也是等比数列”.可类比得关于等差数列的一个性质为
 

查看答案和解析>>

我们把y=xm(m∈Q)叫做幂函数.幂函数y=xm(m∈Q)的一个性质是:当m>0时,在(0,+∞)上是增函数;当m<0时,在(0,+∞)上是减函数.设幂函数f(x)=xn(n≥2,n∈N).
(1)若gn(x)=f(x)+f(a-x),x∈(0,a),证明:
an2n-1
gn(x)<an

(2)若gn(x)=f(x)-f(x-a),对任意n≥a>0,证明:gn′(n)≥n!a.

查看答案和解析>>

已知集合P是满足下述性质的函数f(x)的全体:存在非零常数M,对于任意的x∈R,都有f(x+M)=-Mf(x)成立.
(1)设函数g(x)=sinπx,试证明:g(x)∈P;(2)当M=1时,试说明函数f(x)的一个性质,并加以证明;
(3)若函数h(x)=sinωx∈P,求实数ω的取值范围.

查看答案和解析>>

(本小题满分14分)我们把叫做幂函数。幂函数的一个性质是,当时,在上是增函数;当时,在上是减函数。     设幂函数

   (1)若,证明:当时,有

   (2)若,对任意的,证明

   (3)在(2)的条件下,证明:

查看答案和解析>>

已知集合P是满足下述性质的函数f(x)的全体:存在非零常数M,对于任意的x∈R,都有f(x+M)=-Mf(x)成立.
(1)设函数g(x)=sinπx,试证明:g(x)∈P;(2)当M=1时,试说明函数f(x)的一个性质,并加以证明;
(3)若函数h(x)=sinωx∈P,求实数ω的取值范围.

查看答案和解析>>


同步练习册答案