(2)求离散型随机变量ξ的期望的基本步骤:①理解ξ的意义.写出ξ可能取的全部值,②求ξ取各个值的概率.写出分布列,③根据分布列.由期望的定义求出Eξ 公式E= aEξ+b.以及服从二项分布的随机变量的期望Eξ=np 查看更多

 

题目列表(包括答案和解析)

一个均匀正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,设向上的数之积为ξ,求离散型随机变量ξ的分布列。

查看答案和解析>>

(1)如果随机试验的结果可以用一个________来表示,那么这样的________叫做随机变量;按一定次序一一列出,这样的随机___________叫做离散型随机_________;随机变量可以取某一区间内的__________,这样的随机变量叫做____________.?

(2)设离散型随机变量ξ可能取的值为x1,x2,…,xi,…,ξ取每一个值xi(i=1,2,…,n,…)的概率P(ξ=xi)=pi,则称表

ξ

x1

x2

xi

P

p1

____

____

?  为随机变量ξ的概率分布.具有性质:①pi______,i=1,2,…,n,…;②p1+p2+…+pn+…=_________.

离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率_______.?

(3)二项分布:如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率是P(ξ=k)=_______,其中k=0,1,2,3,…,n,q=1-p.于是得到随机变量ξ的概率分布如下:

ξ

0

1

k

n

P

p0qn

C1np1qn-1

____

pnq0

由于pkqn-k恰好是二项展开式(q+p)n=p0qn+p1qn-1+…+________+…+pnq0中的第k+1项(k=0,1,2,…,n)中的各个值,故称为随机变量ξ的二项分布,记作ξ~B(n,p).

查看答案和解析>>

已知y=2ξ为离散型随机变量,y的取值为1,2,…,10,则ξ的取值为__________.

查看答案和解析>>

已知f(x)=(1+mx)2013=a0+a1x+a2x2+…+a2013x2013(x∈R)
(1)若m=
2
π
1
-1
(sinx+
1-x2
)dx
,求m、a0及a1的值;
(2)若离散型随机变量X~B(4,
1
2
)且m=EX时,令bn=(-1)nnan,求数列{bn}的前2013项的和T2013

查看答案和解析>>

是一个离散型随机变量,其分布列如下表,求的值

-1

0

1

P

1-2

查看答案和解析>>


同步练习册答案