17. 首项为正数的数列{}满足. (Ⅰ)证明:若 为奇数.则对一切 . 都是奇数, (Ⅱ)若对一切.都有.求的取值范围. 查看更多

 

题目列表(包括答案和解析)

(文)等差数列{an}的前3项和为21,前6项的和为24,则其首项为
9
9

查看答案和解析>>

(文科)数列{an}是首项为21,公差d≠0的等差数列,记前n项和为Sn,若
1
10
S10
1
19
S19的等比中项为
1
16
S16.数列{bn}满足:bn=anan+1an+2
求:(1)数列{an}的通项an;(2)数列{bn}前n项和Tn最大时n的值.

查看答案和解析>>

已知数列an是首项为1的等比数列,Sn是an的前n项和,且S6=9S3,则数列an的通项公式是(  )
A、2n-1B、21-nC、31-nD、3n-1

查看答案和解析>>

数列{an}的首项为3,{bn}为等差数列且bn=an+1-an(n∈N*).若则b3=-2,b10=12,则a10=(  )
A、10B、3C、18D、21

查看答案和解析>>

A已知数列{an}是首项为a1=
1
4
,公比q=
1
4
的等比数列,设bn+2=3log
1
4
an  (n∈N*)
,数列{cn}满足cn=an•bn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若cn
1
4
m2+m-1
对一切正整数n恒成立,求实数m的取值范围.
B已知数列{an}和{bn}满足:a1=λ,an+1=
2
3
an+n-4
bn=(-1)n(an-3n+21),其中λ为实数,n为正整数.
(Ⅰ)对任意实数λ,证明:数列{an}不是等比数列;
(Ⅱ)证明:当λ≠-18时,数列{bn}是等比数列;
(Ⅲ)设0<a<b(a,b为实常数),Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>


同步练习册答案