解:(1)由.得. (2)∵NF∥AB.∴△CNF∽△CAB.∴. ∴ .. ∴当x=2.4时.的值最大. (3)当最大时x=2.4.此时F为BC中点. 在Rt△FEB中.EF=2.4.BF=3. ∴. 又BM=1.85>BE.故大树必位于欲修建的水池边上.应重新设计方案. 又∵ 当x=2.4时.DE=5.∴ AD=3.2. 由圆的对称性知满足题设条件的另外设计方案是如图(2).此时.AC=6.AD=1.8.BD=8.2.此方案满足条件且能避开大树. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)(x∈R)满足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.

(1)求函数f(x)的表达式;

(2)若数列{an}满足a1,an+1=f(an),bn-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;

(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴

∴{bn}为等比数列,q=.又∵a1,∴b1-1=

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)证明:∵anbn=an=1-an=1-

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

先阅读理解下面的例题,再按要求解答:
例题:解一元二次不等式x2-9>0.
解:∵x2-9=(x+3)(x-3),
∴(x+3)(x-3)>0.
由有理数的乘法法则“两数相乘,同号得正”,有
(1)
x+3>0
x-3>0
(2)
x+3<0
x-3<0

解不等式组(1),得x>3,
解不等式组(2),得x<-3,
故(x+3)(x-3)>0的解集为x>3或x<-3,
即一元二次不等式x2-9>0的解集为x>3或x<-3.
问题:求分式不等式
5x+1
2x-3
<0
的解集.

查看答案和解析>>

已知函数,数列的项满足: ,(1)试求

(2) 猜想数列的通项,并利用数学归纳法证明.

【解析】第一问中,利用递推关系,

,   

第二问中,由(1)猜想得:然后再用数学归纳法分为两步骤证明即可。

解: (1) ,

,    …………….7分

(2)由(1)猜想得:

(数学归纳法证明)i) ,  ,命题成立

ii) 假设时,成立

时,

                              

综合i),ii) : 成立

 

查看答案和解析>>

先阅读理解下面的例题,再按要求解答:

例题:解一元二次不等式.

解:∵

.

由有理数的乘法法则“两数相乘,同号得正”,有

(1)            (2)

解不等式组(1),得

解不等式组(2),得

的解集为

即一元二次不等式的解集为.

    问题:求分式不等式的解集.

查看答案和解析>>

先阅读理解下面的例题,再按要求解答:

例题:解一元二次不等式.

解:∵

.

由有理数的乘法法则“两数相乘,同号得正”,有

(1)            (2)

解不等式组(1),得

解不等式组(2),得,w.w.w.k.s.5.u.c.o.m    

的解集为

即一元二次不等式的解集为.

    问题:求分式不等式的解集.

查看答案和解析>>


同步练习册答案