解析:∵argz1=π.argz2=π 查看更多

 

题目列表(包括答案和解析)

把函数yf(x)=(x-2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是(  )

A.y=(x-3)2+3            B.y=(x-3)2+1

C.y=(x-1)2+3            D.y=(x-1)2+1

查看答案和解析>>

若函数f(x)=ax3bx2cxd是奇函数,且f(x)极小值f(-)=-.

(1)求函数f(x)的解析式;

(2)求函数f(x)在[-1,m](m>-1)上的最大值;

(3)设函数g(x)=,若不等式g(xg(2kx)≥(-k)2在(0,2k)上恒成立,求实数k的取值范围.

查看答案和解析>>

C

[解析] 依题意得=()[x+(1-x)]=13+≥13+2=25,当且仅当,即x时取等号,选C.

查看答案和解析>>

已知函数f(x)(x∈R)满足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.

(1)求函数f(x)的表达式;

(2)若数列{an}满足a1,an+1=f(an),bn-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;

(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴

∴{bn}为等比数列,q=.又∵a1,∴b1-1=

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)证明:∵anbn=an=1-an=1-

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

(本题满分12分)二次函数f(x)的最小值为1,且f(0)=f(2)=3.

(1)求f(x)的解析式;(2)若f(x)在区间[2aa+1]上不单调,求a的取值范围.

 

 

查看答案和解析>>


同步练习册答案